
1 | P a ge
Cloud Computing Project Report ς

Cloud Computing SS2023

Project Report

Automatic Pet Detection using Edge
Computing

Supervisor: Prof. Dr. Christian Baun

Submitted By: Vikrant Shah (1411054),

Sushil Koirala (1421387),

Shikha Singh (1421659),

Nega Venkata Sai Kumar Vadlani (1417605),

Zaghman Saghir (1411960)

Submission Date: 14th July 2023

2 | P a ge
Cloud Computing Project Report ς

Table of Contents

Team Members and Contributions .. 3

1. Introduction .. 4

2. Architecture Diagram ... 4

3. Hardware and Software Configuration ... 5

3.1 Hardware Configuration in Edge Node .. 5

3.1.1 Raspberry Pi 4... 5

3.1.2 Raspberry Pi Camera module v2 .. 6

3.2 Software Configuration in Edge Node .. 6

3.2.1 Python ... 6

3.2.2 OpenCV .. 6

3.2.3 YOLOv5 ... 7

3.2.4 MinIO Client library ... 7

4 Build A Raspberry Pi Kubernetes cluster with K3S .. 7

4.1 Installation of Raspberry Pi OS .. 7

4.2 Creating K3s Kubernetes Cluster ... 9

5 Implementation ... 11

5.1 Edge Node and Camera Module Set Up for Object Detection ... 11

6 Creating the Pets Detector Model .. 11

7 Using This Model in Raspberry Pi V4 With Raspberry Pi Camera V2 .. 12

8 Docker Images .. 16

REFERENCES .. 21

3 | P a ge
Cloud Computing Project Report ς

Team Members and Contributions

Task Contributors

K3S cluster, Sensor

Nodesetup

Sushil Koirala

ML Model Training

Shikha Singh

ML model Deployment on

pi4

Vikrant Shah

API development

Vikrant Shah

User Interface development

Vikrant Shah

Object Storage (MinIO) ,

Docker image and all services

Vikrant Shah , Sushil, Zaghman

Notification and Alerts

Naga Venkata Sai Kumar Valdani

Sensor Node and Cluster

Integration

Zaghman Saghir

Project Integration

Team

Documentation and

Presentation

Team

Repository: https://github.com/vikrant0526/his-cloud-computing-project

4 | P a ge
Cloud Computing Project Report ς

1. Introduction

Our objective for the SS2023 semester project was create to an edge computing

solution to detect pets at sensor node and subsequently store the results in the

cloud.

Cloud computing involves sending data to cloud for processing and storage, while

edge computing processes data at the edge node and only transmits a limited

amount of data to the cloud for storage. Edge computing offers numerous

advantages compared to traditional cloud computing approaches. It provides

improved latency by processing data near the source i.e., edge node. Additionally,

edge computing solutions require less bandwidth since data is processed at the edge

node. These solutions are scalable, reliable, cost-effective and prioritize privacy

and security.

2. Architecture Diagram

In the given architecture diagram, the edge node performs the machine learning

algorithm on its own device and calculates the expected result. Unlike cluster-

managed setup, this configuration does not rely on multiple sensor nodes for data

capture and processing. This is a fundamental concept used in Edge computing.

In the event of sensor node failure, the other sensors nodes running in edge

computing topology take over the task of capturing objects and performing

necessary computation. The local processing of data on the edge node itself

delivers faster and efficient results, eliminating the latency associated with

transferring data back and forth to a cluster for processing.

The UI application has been developed using React, a framework that allows for

rendering results. The displayed results include confidence intervals indicating the

certainty of detecting pets.

By using the CLI is an effective method for assessing the overall health of cluster

and monitoring the status of various nodes, pods and services that are operating in

the Cluster.

In the cluster there is one master node and three worker nodes. The master node

manage active services, manage pod health and handle load balancing for incoming

traffic. MinIO operates in a single pod using the Single node Single Drive

deployment mode. Multiple pods are running for UI applications to distribute the

incoming traffic.

5 | P a ge
Cloud Computing Project Report ς

3. Hardware and Software Configuration

3.1 Hardware Configuration in Edge Node

3.1.1 Raspberry Pi 4

The Raspberry Pi 4, developed by Raspberry foundation, is an affordable and high

performance single-board computer with versatile applications in areas like home automation,

computer vision IOT and AI. It supports various operating systems including Raspbian,

Debian Ubuntu, windows and Linux and is compatible with popular programming languages

such as Python, C and Java.

In the context of Pet detection, the Raspberry Pi 4 equipped with the Raspberry Pi 4

BULLSEYE 64-bit Debian OS serves as an edge node.

6 | P a ge
Cloud Computing Project Report ς

To setup the sensor node, we installed Raspberry Pi OS 64 bit using the Raspberry Pi Imager

tool.

The OS can be selected from the Choose OS option on the tool. The storage i.e., the SD card

was set using the Choose Storage option of the tool. Once both these are set, we can write the

OS on the SD card using the Write Option of the tool.

The SD card was then inserted back into the Raspberry Pi 4 SBC.

3.1.2 Raspberry Pi Camera module v2

The Raspberry Pi Camera module v2, an official module by Raspberry foundation captures

high-quality video and images. It is connected to Raspberry and plays a crucial role in

capturing frames for live pet detection.

3.2 Software Configuration in Edge Node

3.2.1 Python

Python is widely used high-level programming language for computer vision object

detection, and it is supported by on Raspberry Pi with pre-installed OS support. Popular object

detection frameworks like OpenCV offer Python APIs for training and deploying models.

3.2.2 OpenCV

OpenCV is a popular and widely used open-source computer vision library, is highly

compatible with Raspberry Pi4. It offers a large set of algorithms and functions for image and

video processing including object detection.

7 | P a ge
Cloud Computing Project Report ς

3.2.3 YOLOv5

YOLOv5(You Only Look Once version 5) is a highly advanced real

time object detection model that is widely used in computer vision

applications, it requires high powerful GPU. It can be used on the

Raspberry Pi 4 for object detection.

It requires an OpenCV library, in our project YOLOv5 is used for to

train and detects Pets from the live camera feed.

3.2.4 MinIO Client library

MinIO is a object storage server and MinIO client library provides

simple APIs to to assess MinIO and carry out operations such as

bucket listing, object creation and listing.

4 Build A Raspberry Pi Kubernetes cluster with K3S.

4.1 Installation of Raspberry Pi OS

At start we need to download Raspberry Pi Imager and install it on

local machine.

Once installed, open the program and select the Raspberry Pi OS

(64-bit) as the operating system.Next, insert the microSD card into

your computer and choose it as the target for the installation.

After selecting the SD card, click on the "Write" button to flash the

card with the Raspberry Pi OS version. Once the flashing process is

complete, you need to ensure that the host network is available.

For Raspberry Pi-04, you will install and configure Raspberry Pi OS

Lite (64-bit) in the same way as before. Each Raspberry Pi will have

a unique hostname assigned to it, such as "Kmaster" for the master

node and "knode1" for worker node 1. After assigning the

hostnames, you should configure the Wi-Fi settings and enableSSH

with password authentication.

8 | P a ge
Cloud Computing Project Report ς

Fig. 2. Network set up.

After installing the operating system, it is important to modify the dhcpcd.conf file located in the "/etc"

directory. This file allows you to configure the IP addresses for the sensor node and the master node6.

For thesensor node, you should set the IP address as 192.168.0.99, while for all other Raspberry Pi-03

devices, the IPaddress should be set as 192.168.0.100.

9 | P a ge
Cloud Computing Project Report ς

Once you have made the necessary configurations in the dhcpcd.conf file, you can power on

all the Raspberry Pi devices and verify if they have successfully connected to the current

network. To confirm the setup, you can use the ping command. followed by the respective

hostnames.

Fig 3. ping Command Execution

4.2 Creating K3s Kubernetes Cluster

The Raspberry Pi cluster utilizes a lightweight Kubernetes distribution called k3s. This

distribution, k3s, is specifically designed to cater to IoT solutions that involve devices with

limited resources, such as Raspberry Piboards.

To install K3s on the master node, you can execute a given command. This command fetches

the K3s installationscript using the `curl` command and executes it as a shell script using `sh`.

This process installs the K3s server onthe master node. On the other hand, the worker nodes,

which are Raspberry Pis, will have

10 | P a ge
Cloud Computing Project Report ς

K3s worker installed on them. Once the installation is complete, all the agent nodes, including

the worker nodes, will be registered and connected to the master node. After this step, the

token from the master node can be read from the file, With thistoken, k3s can be Installed on

worker nodes by the following command:

curl sfL https://get.k3s.io | K3S_KUBECONFIG_MODE="644" sh -s

Fig: Command Execution

After this step, the token from the master node can be read from the file shown on figure 13.

With this token, k3s can be installed on worker nodes by the following command:

curl sfL https://get.k3s.io |K3S_TOKEN="<TOKEN>"K3S_URL="https://<master_node_ip>:6443" sh ï

Cloud Computing Project Report ς

Fig: Token Command Execution

5 Implementation

5.1 Edge Node and Camera Module Set Up for Object Detection

To set up Raspberry Pi 4 as an Edge Node with the Pi Camera Module v2, the following

Steps are followed.

Install and boot the Raspbian OS: Raspberry Pi runs bullseye, a 64-bit Debian OS On an SD

Card. It boots the Raspbian Desktop and can be accessed remotely via SSH(PuTTY) or VNC

Viewer.

1. Connect the Pi Camera module v2: To enable camera module on Raspberry Pi 4 connect it

to dedicated camera port and update the configuration using respi-config.

2. Install OpenCV and Python Packages: Python is preinstalled in Raspberry Pi 4. Python

dependencies like NumPy an OpenCV is installed for object detection.

To upload the detected image to MinIO, The MinIO Client library for Python is

installed. This will allow interact with the MinIO server from the Python code.

For NumPy installation following commands are used

(a) Install pip package manage.

sudo apt-get install python3-pip

(b) Use pip to install Python. # pip3 install Python

6 Creating the Pets Detector Model

1)

11 | P a ge

Data Collection and Labeling: Collect images of pets and annotate them to create a training dataset.

The dataset should consist of diverse Pets positions, lighting variations and backgrounds.

Cloud Computing Project Report ς

2) Dataset Preparation: The dataset is divided into two sections: a training set and a validation

set. The training set is employed to train the model, while the validation set is employed to

assess its performance.

3) Hardware and Software Setup: A suitable hardware platform, such as a powerful desktop

computer or a GPU instance in the cloud, is selected for model training. In this scenario,

Google Colab is utilized as a cloud-based computing resource. The essential software

components and libraries, including a deep learning framework like PyTorch or Tensor-Flow,

along with the YOLOv5 implementation

are installed.

4) Model Initialization: The architecture of YOLOv5 and pre-trained weights from a largeimage

classification dataset is obtained by downloading them.

5) Configuration: The YOLOv5 configuration file is adjusted to match the attributes of the

dataset, such as the number of classes, input image size, and the count of anchor boxes.

Hyperparameters for the training process, like the learning rate, batch size, and number of

epochs, are configured.

6) Training: The training process begins by providing the model with the training set images and

their respective labels. The progress of the training process is monitored, which involves

tracking

the loss function and the accuracy of the validation set. Model weights are saved periodically

or when the validation set accuracy reaches a specified threshold.

7) Model Evaluation and Fine-Tuning: The trained YOLOv5 model is utilized to conduct

object detection on a test set of images. The modelôs performance is evaluated by measuring

metrics such as precision, recall, and F1-score. If needed, the model undergoes fine-tuning,

and the evaluation process is repeated to enhance its performance. By adhering to these steps,

a YOLOv5 model can be trained using a dataset, and its performance can be assessed for the

specific task of pet detection. Itôs a pre trained model that has been further trained using 2576

images, 20 epochs.

7 Using This Model in Raspberry Pi V4 With Raspberry Pi Camera V2

1) Selection of Trained Model: A YOLOv5 model that has been trained on dataset is selected

for use.

2) Setting up the Sensor Node: To function as the sensor node, a Raspberry Pi 4 board has

beenselected and configured with a 64-bit version of the Raspbian operating system.

3) Connecting the Camera: The Raspberry Pi 4 board is connected with a Raspberry Pi Camera

v2to capture the images of environment.

4) Transferring the Model and Libraries: The YOLOv5 model, along with all the essential

librariesrequired for its execution, are transferred to the Raspberry Pi 4 board.

5) Configuring the Raspberry Pi 4: The setup of the Raspberry Pi 4 board involves configuring

it to execute the YOLOv5 model, utilizing the Raspberry Pi Camera v2 as the input source .

13 | P a ge
Cloud Computing Project Report ς

6) Running the Model: On the Raspberry Pi 4 board, the YOLOv5 model is executed to
conduct object detection on the images acquired through the Raspberry Pi Camera v2.

7) Processing and Communication of Results: After processing the detection outcomes, the

resultsare transmitted to the master node for additional analysis and evaluation. By following
these steps, the trained YOLOv5 model can be used on a Raspberry Pi 4 board with a Raspberry Pi

Camerav2 for the task of rat detection.

14 | P a ge
Cloud Computing Project Report ς

Fig : Image Detection

Confusion Matrix: The confusion matrix is a commonly used tool to assess the effectiveness of an object

detection model. It consists of two dimensions: actual classes and predicted classes. The actual classes refer

to thetrue labels of the objects in the test dataset, while the predicted classes are the labels assigned by the

model during its inference process.

15 | P a ge
Cloud Computing Project Report ς

By examining the confusion matrix, we can observe that the model has made accurate predictions in most

cases, with only a few minor errors. These errors indicate that the model's predicted bounding boxes

slightly deviate from the ground truth objects. The concept of "loss" comes into play here, as it quantifies

how well the predictedbounding box areas cover the actual objects.

16 | P a ge
Cloud Computing Project Report ς

8 Docker Images

To run the program on a cluster, it is necessary to generate docker images. The difficulty lies in

creating docker images specifically tailored for the raspberry pi CPU architecture. To address
this challenge, Docker is installed on a Raspberry Pi 4, and the docker images are generated on this device.

One of these images, associated with the program running on the sensor node, will be executed locally

on the Raspberry Pi 4. The other two images, intended for the logger program on the back end and

the front-end website, will be uploaded to Docker Hub for deployment on the cluster.

17 | P a ge
Cloud Computing Project Report ς

9 MinIO Object Storage Deployment

MinIO was selected as the database for the image detection software because it is specifically

designed to handle the storage of objects, such as images, which is a requirement for this

software. Several factors were takeninto consideration before choosing MinIO. Its scalability,

resilience, and the availability of a RESTful API customized for use in Kubernetes clusters are

some of the beneficial features. To deploy MinIO, a deployment artifact is utilized, and a

service is created to provide access to the command line interface.

MinIO can be set up in various modes within the cloud network. In this project, the Single

Node Single Drive mode was employed.

The Multi -node multi-drive mode requires more powerful hardware to ensure synchronization

between multipleinstances of the database running on the cluster.

10. Backend and Frontend Technology :

In order to develop both the backend and frontend components of the application, we opted

for Next.js, a meta framework for React.js that offers full-stack capabilities. Next.js allows us

to build the frontend using React.js and provides an abstraction for creating REST endpoints.

One notable advantage of Next.js is its file-based routing system, which reduces the need for

extensive configuration compared to other frameworks.

Another significant benefit of choosing Next.js is the simplified deployment process. By

using Next.js, we can manage the deployment of a single application hosted on the same

server instance and URL. In our case, the application is accessible through

http://localhost:3000, while all REST endpoints are accommodated under

http://localhost:3000/api.

18 | P a ge
Cloud Computing Project Report ς

i. Backend and Frontend Functionality :

The frontend component consists of a single route that displays a list of all the detected pets. On the other

hand, the backend component provides three endpoints:

EndPoint
s

Descriptions

GET /api Returns a list of all detected pets along with their corresponding MinIO URLs.
Post /api Stores an image and related data in MinIO. Saves the MinIO URL and associated data

in the database.
GET /api[id] Retrieves information for a specific instance of a detected pet from the database.

Identified by "id" parameter.

ii. Database Technology :

For the database, we employed a Cloud Database service called PlanetScale, which utilizes

MYSQL and Vitess for hosting and managing database deployments. PlanetScale also

supports horizontal scaling, which was particularly advantageous given the limited

performance capabilities of the Raspberry Pi 3. By offloading our database to PlanetScale, we

were able to free up resources on the Raspberry Pi 3 for other services.

Additionally, we leveraged Prisma, a type-safe ORM for TypeScript that supports various

SQL databases. Prisma eliminates the need to write manual queries and mitigates the risk of

SQL attacks, such as query injection. This integration with our backend was seamless,

resulting in a backend comprised of only two files and approximately 40 lines of code,

including the necessary boilerplate code.

19 | P a ge
Cloud Computing Project Report ς

20 | P a ge
Cloud Computing Project Report ς

Results:

