
Edge Computing Solution for Pet Detection

FRANKFURT UNIVERSITY OF APPLIED SCIENCES

CLOUD COMPUTING - SS 2023

UNDER THE GUIDANCE OF

PROF. DR. CHRISTIAN BAUN

BY

Syeed, Nur Uddin Muhammad(1420731)

Saddam Hossain (1440339)

Md Motaleb Hossain(1396506)

Omme Salma (1420582)

NASHRIF, A B M(1404537)

IMRUL KAYES TALUKDAR(1396425)

July 2023

0. Table Of Content

0. Table Of Content.. 2
1. Introduction..3

1.1 Objective..3
1.2 Required types of equipment...4
1.3 System Architecture and project implementation detail..4

1.3.1 System Diagram... 5
1.3.2 System Architecture..5
1.3.3 Pet Detection and Storage Process..6
1.3.4 User view of the System-Frontend..6

2 Task Distribution:..7
3 Operating System Installation... 7
4 Sensor Node:.. 10

4.1 Setup:...10
4.2 Image detection on sensor node:...10
4.3 Sequence Diagram of the Sensor Node.. 11

5. Pet Detection Model Preparation(YOLOv5)...12
5.1 Data Collection...12
5.2 Data Preprocess and YOLO Format Conversion..12
5.3 YOLOv5 Model Version Selection..12
5.4 Model Training and Validation..13

6. Installation and Setup of K3s (Cluster Setup)...13
3.1 Install k3s on Master Node.. 13
3.1 Install k3s on Worker Node..14

7. Frontend:.. 15
8. Backend API...16

8.1 Backend Framework (FastAPI)..16
8.2 Running the application:.. 16
8.3 API Endpoints:... 16
8.4 Sequence Diagram of the BackendAPP:...18
8.5 Data storage:... 18

8.5.1 MinIO:... 18
8.5.1 MySQL:... 18

9. Containerization...19
9.1 Creating WebAPP docker Image:.. 19

10. Deployment on K3S:..20
10.1 Create Secrets:..20
10.2 Database deployment:...20
10.3 WebApp deployment..21

11. Project links:.. 22
12. Bibliography...23

1. Introduction

Today, cluster computing has grown rapidly in the field of distributed and parallel processing. A
cluster is a collection of computers that are connected together in a parallel manner using a
high-speed local area network. These computers work together to process data in parallel and can
be viewed as a single system.

Another Important term in cluster computing is Edge computing which is a distributed computing
paradigm. It is the act of running workloads on edge devices that helps to Enhance efficiencies,
minimized latency, and increase uptime.

This project aimed to develop an edge computing solution for the automatic detection of pets
(Here cats and dogs) using Raspberry Pi as an edge/sensor node and multiple Raspberry Pis
connected together and used as a single cluster. Nowadays we can get hardware that can do
moderate computation very easily. we can distribute some computation on the edge sensor and
make the cloud app more cost-friendly and efficient. A Raspberry Pi is a low-cost, single-board
computer. For example, Raspberry Pi can be used as an edge node and can detect dogs or cats
using a pre-trained Model and send only the detection data to the cloud (Kubernetes Cluster). In
this way, the cloud will have to only take the responsibility of further data analysis.

1.1 Objective

The main objective of this project is to develop an edge computing solution for the automatic
detection of pets (Cat, Dog) using Raspberry pi and k3s Cluster. This includes:

● Developing and setup up sensor nodes with Raspberry Pi 4 and camera modules
● Deployment of the operating system and object detection software
● Collecting a sufficient number of images for the training and testing of the object detection

model
● Deploy the backend as a docker container on K3s to manage the sensor nodes and the

collected data
● Deploy frontend as a docker container on k3s to present e.g. log information, event

messages, and a map of events with proof like images and timestamps.
● Use REST API protocol to interact between the components (frontend, backend, Edge

node, and other services)

To obtain this, we Set up an Edge node using Raspberry Pi 4 and Camera Module and deploy
several micro-services on the Kubernetes Cluster (k3s) which are:

1. MySQL to store capture-related metadata for further analysis.
2. MinIO Data storage to store images

https://projects.raspberrypi.org/en/projects/getting-started-with-picamera
https://github.com/Qengineering
https://en.wikipedia.org/wiki/Representational_state_transfer

3. API service for the data communication/exchange
4. Frontend Application to visualize the summary of the collected data

1.2 Required types of equipment

● 1 Raspberry Pi 4 Model B with 1 Samsung Pro Plus 32GB MicroSD memory card
● 4 Raspberry Pi 3 Model B with 4 Samsung Evo Plus 32GB MicroSD memory card
● 1 Raspberry Pi power adapter 3
● 22 bolts for Raspberry Pi construction
● 1 TP-Link Switch
● 1 Raspberry Pi camera module V2
● 5 LAN cable

1.3 System Architecture and project implementation detail

As we are given five Raspberry PIs and one of them is pi4 and the others are pi3, we have used
the most powerful pi which is pi4 as the sensor/edge node to capture and detect images. This is
because here capturing images and detecting them is the most heavy job. We have used other 4
pi3 to create the K3S cluster. We installed a headless light os on each node to avoid unnecessary
loads.

Here Sensor node is responsible to capture and detecting of images. After detection, it only sends
the detection data to the cloud if it can detect any cat/dog.

We have used the rest of the 4 raspberry pi3 to create the Kubernetes cluster on which our
services reside which are MySql, MinIO, and WebApp. We have used the MySQL and MinIO
images from the docker hub to deploy MySQL and MinIO the Kubernetes. The core responsibility
which is receiving the data from SensorNodes and storing them and making them available to the
front end is managed by WebApp which is a REST API-based API service. To deploy that image
on K3S we dockerized the image and made it publicly available on dockerhub and used that
image from docker-hub to deploy it on Kubernetes. Our Frontend is also integrated with the API
service, So the front end also got deployed along with the API service. Once everything is
deployed, the system is ready to receive sensor data and analyze them.

1.3.1 System Diagram

Figure 1: Overall System Setup

1.3.2 System Architecture

Figure 2: System Architecture

1.3.3 Pet Detection and Storage Process

Figure 3: Pet Detection and Storage Process in K3s (Level 1)

1.3.4 User view of the System-Frontend

Figure 3: User view of the System-Frontend (Level 2)

2 Task Distribution:

Task distribution table among the team members.

3 Operating System Installation

To operate, Raspberry Pi requires an operating system. Raspberry Pi Imager serves as the
endorsed imaging software by Raspberry Pi and can be obtained from the official website at
https://www.raspberrypi.org/. This software provides a convenient and efficient method to install
Raspberry Pi OS and various other operating systems onto a microSD card, enabling seamless
usage with Raspberry Pi. It is compatible with MacOS, Windows, Linux, and Ubuntu systems. To
proceed, download and install Raspberry Pi Imager onto your computer, ensuring that you have an
SD card reader. Insert the SD card intended for use with your Raspberry Pi into the reader, and
launch Raspberry Pi Imager.

Task Member Name

Installing OS and K3S Cluster preparation Omme Salma

YOLO Model Preparation Saddam Hossain

Sensor preparations and Sensor Script Nur Uddin Syeed

Backend REST API service Development Nur Uddin Syeed and Motaleb Hossain

Front-End Development Nashrif

Dockerization of the application Imrul Kayes

Research and System Design on cluster
setup / minIO / Persistent Storage

Motaleb Hossain

Development of K3S Scripts and apps
deployment and networking on K3S
Cluster

Nur Uddin Syeed and Nashrif

Figure 4: Raspberry Pi Imager

The Raspberry Pi Manager is a user-friendly application designed to facilitate the installation of
various operating systems, including the recommended Raspbian Desktop, which is a
Debian-Linux based operating system. Additionally, it offers alternative options such as the popular
Raspberry Pi OS Lite, Ubuntu Mate, OSMC, and Retro Pie. It's worth noting that Raspbian
Desktop serves as the official and primary operating system for Raspberry Pi.

Figure 5: Raspberry pi Imager (OS Selection)

1. Select an OS from the list of Raspberry Pi OS.
2. Click Choose SD card. Select from the list the SD card you want to write to.
3. To set up a raspberry pi in headless mode without the need for additional peripherals

such as a monitor, keyboard, and mouse.
I. Click on the advanced options of the Imager
II. Enable SSH and set up a custom Hostname
III. Configure Wi-Fi, by entering the SSID and

IV. the password of your Wi-Fi network
IV. Click on SAVE

4. Click Write to begin the image writing process.

Figure 6: Raspberry pi SSH setup

After successfully installing the chosen operating system onto the SD card, we can proceed to
insert the SD card into our Raspberry Pi in order to boot it. After Booting it will create a boot file on
the SD card. Unplug the power to raspberry pi and SD card back into the usb device into the
computer. Since we will install k3s Kubernetes on Raspberry, we have to update these two files to
avoid errors during installation time.

1. In /boot/cmdline.txt file, The following text needs to be appended at the end of the file.

cgroup_memory=1cgroup_enable=memory ip=192.168.0.58 :: 192.168.1.1 :

255.255.255.0 : rpimaster: eth0 : off

2. In the config.txt file, the following line needs to be added

arm_64bit=1

After the save, the node needs to be rebooted. Similarly, install OS for on other raspberry pi
worker nodes. To verify their availability, ping them using their device IP Address.

ping 192.168.0.58 -t

4 Sensor Node:
We have used Raspberry pi4 and pi camera v2 as the sensor node. Before start we also need to
enable the camera of the sensor node.

4.1 Setup:
We have installed a headless Raspberry pi os on our sensor node. To be able to run our script on
the sensor we had to install several packages on the Raspberry Pi, which include:

1. OpenCV and Numpy (Used to capture the image and process the image)
2. Pytorch (Used to load the pre-trained cat-dog detection model and detect pets.

4.2 Image detection on sensor node:
We have deployed a Python script to the sensor node to capture images and detect the pet. It just
keeps capturing images in every second (In our case more than one second as the hardware
takes time to run heavy computation for the image detection algorithm).
To start detection all one needs to do is connect to the sensor node via ssh and run the script by:

pip install -r requirements.txt

python run.py

This will start capturing the images. After capturing it starts processing the image and reduce the
size, so that our detection model can process the image faster. If any cat or dog is detected it will
do following tasks:

1. Draw the image
2. Convert the image to base64 string
3. Send the image data along with the detection data to the API server.

Figure: Sensor Node Workflow

4.3 Sequence Diagram of the Sensor Node

Figure: Image Capture and Detection on Edge Node

5. Pet Detection Model Preparation(YOLOv5)

YOLO (You Only Look Once) is a popular algorithm for object detection that uses a single neural network to
predict bounding boxes and class probabilities directly from full images. YOLOv5, the fifth iteration of YOLO
object detection model built on PyTorch and it is one of the fastest and most accurate object detection
models available.

5.1 Data Collection

The first step in training a YOLOv5 model is to collect a dataset of images that we want the model to be
able to detect objects in. For YOLOv5 model, we need labeled images with bounding boxes around the
objects and assign a class label to each bounding box. We collect 3686 images of cat and dog's xml files
with bounding box and class information from here
https://www.kaggle.com/datasets/andrewmvd/dog-and-cat-detection/code .

5.2 Data Preprocess and YOLO Format Conversion

After Collecting the labeled dataset, we convert it Xml to .txt format as YOLO v5 expects annotations for
each image in the form of .txt file where each line of the text file describes a bounding box. It requires the
dataset to be in the YOLO format. Here’s an outline of what it looks like:

● One text with labels file per image
● One row per object
● Each row contains: class_index bbox_x_center bbox_y_center bbox_width bbox_height
● Box coordinates must be normalized between 0 and 1

After converting the dataset into yolo format, we split the dataset into a training set and a test set for model
training.

5.3 YOLOv5 Model Version Selection

YOLOv5 is available in four models, namely small (s), medium (m), large (l), and extra-large (x), each one
of them offering different detection accuracy. Each variant also takes a different amount of time to train.

Figure :YOLOv5 model version

https://www.kaggle.com/datasets/andrewmvd/dog-and-cat-detection/code

We select a model to start training from. Considering computational power for the training process, we
selected YOLOv5m, the third smallest and fastest model available.

Figure : YOLOv5 Model performance

5.4 Model Training and Validation

To train the YOLOv5 model, navigate to the YOLOv5 folder and execute the following command:

python train.py --data ../data.yaml --weights yolov5m.pt \

--img 352 --epochs {EPOCHS} --batch-size 16 --name {RESULT_DIR}

Here,
● –img: quadratic image size in pixels
● –batch: training data used per training epoch
● --epoch: maximum number of training steps
● –data: data.yaml, that comes with the downloaded data set
● –weights: trained weights from Yolo which is yolov5m.pt.

Depending on the machine used, model training may take a long time. We set epoch=20 and training is
done on our local machine, and it takes 7.750 hours to train. Then model evaluation is done on the
validation set. After the model is trained and evaluated, test it with new cat and dog images. Here is the
github link of our model https://github.com/Sabuj-CSE11/AnimalDetection (Only for the model preparation).

6. Installation and Setup of K3s (Cluster Setup)

3.1 Install k3s on Master Node

1. First launch terminal
2. Go to ssh into the first Raspberry Pi where we want to install the master node using the hostname

or IP address.

https://github.com/Sabuj-CSE11/AnimalDetection

ssh pi@192.168.0.58 and Authenticated via password.

3. Go to root using the command sudo su -
4. Install k3s server with:

curl -sfL https://get.k3s.io | K3S_KUBECONFIG_MODE="644" sh -s -

5. After installing k3s on master node, check if Kubernetes works and the master node is available with
this command

kubectl get nodes

6. In order to install the k3s worker node on the other Raspberry Pi we need to know the access token from
the master node. To extract the token run the following commands.

“cat /var/lib/rancher/k3s/server/node-token”

This command generates a token that is used to register the worker node to the cluster. E.g.

K101568b95ffbf1ddc0dfdsad1d87eb702eb04fce3376204be44d5eded02831a36f::server:8

3684b530e6562f86b84d5d5bf4a2eab

3.1 Install k3s on Worker Node

1. First launch terminal
2. Go to ssh into the first Raspberry Pi where we want to install the master node using the hostname

or IP address.

ssh pi @192.168.0.60 and Authenticated via password.

3. Go to root using the command

sudo su -

4. Install k3s worker with

curl -sfL https://get.k3s.io |

K3S_TOKEN=K1032197fb8d62f0e99f92997ab627427f8f5dea03c583c313bc4a9f5b44ad97cc6

::server:4e333637efa34d5a4e352791a3911b93 K3S_URL="https://192.168.0.59:6443"

K3S_NODE_NAME="worker1" sh -

5. Repeat this step for all other 3 worker nodes

Now We can check the information about the master and worker nodes by running the following
command in the terminal:

Kubectl get nodes

7. Frontend:
We have integrated the frontend along with the Backend service and used jinja2 to generate HTML pages.
The main task of the front is to enable the user to analyze the detection data detected by all sensor nodes (
In our case only one sensor node).

The way to run the front end is explained in the Backend section. Once the frontend is running user can
access the frontend using any ip of the cluster and on port 30080.

http://192.168.0.60:30080/

http://192.168.0.61:30080/

http://192.168.0.62:30080/

http://192.168.0.63:30080/

In the home page the latest detection data from the sensor node is shown but it is possible to fetch
specific data efficiently as we have used MySQL to store the data. Depending on the use case
anyone can add a specific fetch API endpoint and show the specific date to the user.

Users can view all the data as a list and view the detail with the image of a single detection by
clicking over the list of the data.

http://192.168.0.62:30080/
http://192.168.0.62:30080/
http://192.168.0.62:30080/
http://192.168.0.62:30080/

8. Backend API

8.1 Backend Framework (FastAPI)
The Backend web app is developed using one of the modern Python web frameworks named
FastAPI. FastAPI is a fast, and highly efficient Python web framework for building APIs. It was
created to provide developers with a high-performance alternative to existing web frameworks,
such as Flask and Django, while maintaining ease of use and simplicity. Overall, FastAPI
combines the best features of modern Python and asynchronous programming to deliver
high-performance web APIs with a developer-friendly experience. Its simplicity, speed, and
scalability make it an excellent choice for building robust and efficient API services.

8.2 Running the application:
Running the application is super simple. All one needs to do is follow the following 5 steps.

1. Clone the project

git@github.com:nuruddinsayeed/CloudApp101.git

2. Goto WebApp Directory
3. Create a virtual environment

Python -m venv venv

4. Activate virtual environment

source venv/Scripts/activate (Linux and Mac)

venv/Scripts/activate (Windows)

5. Install all requirements

pip install -r requirements.txt

6. Run the app

python run.py

8.3 API Endpoints:
Our main requirement is to receive the data from the sensor and store it in a database and enable
it to perform operations on the data. For that, initially, we have created three API endpoints:

1. Data receive endpoint (to receive data from sensors)
2. Api-Home to send the latest detection data to the frontend

3. Api-Home-Detail for viewing the detail of specific detection

Because using cluster our web app can handle a good amount of requests and process them,
although we have used only on sensor node in our case. But if we use multiple sensor nodes and
send data at a time the backend service will not complain as it is able to handle a good amount of sensor
data at a time because of load balancing functionality in our cluster

Figure: API endpoints

The API endpoint expects the data in the following format as a post request:

//Image

{"image": "base64............."

// Data

{

"detected_at": "detection time",

"confidences": [

"('Animal1', 99)",

"('Animal 2', 90)",

"('Animal N', 89)",

]

}

8.4 Sequence Diagram of the BackendAPP:

8.5 Data storage:
To make the data analysis easier and fetch operation faster we have used two different database systems.
One is MinIO and the other one is MySQL. MinIO is used only to store the detected image and detection
data is stored in MySQL. Also having three workers means we can deploy and use two database images
on the container without adding any extra delay for the computation. Besides having different data storage
for structured data and images allowed us to perform fetch operations much faster.

8.5.1 MinIO:
We found MinIO as a perfect choice for us that can fulfill our requirements. MinIO is one of the popular
high-performance object storage servers. It is designed to be simple, lightweight, and compatible with the
Kubernetes cluster, making it an excellent alternative to proprietary cloud storage services for us. It is
compatible with K3S and it has a docker image which is runnable in our Raspberry Pi (ARM processor).

8.5.1 MySQL:
MySQL is an open-source relational database management system (RDBMS) that is commonly used for
storing and managing structured data. It is one of the most popular and widely adopted databases in the
world, known for its reliability, performance, and ease of use.

Diagram: Structure of the detected on MySQL

9. Containerization

We have used Docker to containerize our apps. To be specific we just had to containerize our WebApp and
used already containerized images from Docker-Hub.

9.1 Creating WebAPP docker Image:

As we are going to deploy our app on ARM-based hardware we had to create an image that is compatible
with an ARM-based processor. Then we uploaded our docker image to the docker-hub as we will need it to
be easy to deploy containerized to K3S from the docker-hub.
We have multiple versions of the image and it is recommended to use only the latest version. (In our case
we have used version 102)

To run this image on your local directory just run the following command: (it is expected that you have
MySQL with the required database name and MinIO running on your system)

docker pull nuruddinsayeed/webapp-animal_detector

Figure: Docker image

10. Deployment on K3S:

To deploy all the apps on our K3S we have written individual scripts in YML format. We have followed the
following sequence for the deployment:

10.1 Create Secrets:
Our every app uses some secrets like passwords or keys and we have defined it on the k3s cluster by
setting the secrets from kubectl-secrert.yml file.

kubectl apply -f kubectl-secrert.yml

10.2 Database deployment:

We had to do something special to deploy database images on k3s. For the use case, we needed
something that allows users to request and use storage resources from a storage provider in a portable and
platform-independent manner. That's where PVC (PersistentVolumeClaims) and PV helped.

PersistentVolumeClaims and PersistentVolumes play a crucial role in managing and accessing persistent
storage in Kubernetes. They provide a portable way for applications to request and use storage resources
without being tightly coupled to specific storage providers or infrastructure details. By abstracting storage
management, PVCs and PV contribute to the flexibility, portability, and scalability of applications deployed in
Kubernetes clusters.

So we have used PVC for MinIO and PV for the MySQL. So We have deployed MinIO and MySQL by
following:

kubectl apply -f minio-config.yml

kubectl apply -f minio-storage.yml

kubectl apply -f minio.yml

kubectl apply -f mysql-config.yml

kubectl apply -f mysql-storage.yml

kubectl apply -f mysql.yml

After that we also hade to go inside of the MySQL image to create a database named “detection_data” as
our webapp requires a database with that name:

To access Mysql On K3S

kubectl exec --stdin --tty mysql-67cdcf9b99-hmdnk -- /bin/bash

10.3 WebApp deployment
WebApp is deployed by running the following command:

kubectl apply -f webapp.yml

Figure: All deployed apps on K3S Cluster

11. Project links:
GitHub: https://github.com/nuruddinsayeed/CloudApp101
Docker: https://hub.docker.com/r/nuruddinsayeed/webapp-animal_detector

Figure: Project Hardware Setup

https://github.com/nuruddinsayeed/CloudApp101
https://hub.docker.com/r/nuruddinsayeed/webapp-animal_detector

12. Bibliography

1. Christian Baun. Cloud Computing (SS2023). URL:https://www.christianbaun.de/CGC23/index.html
[Access: 09. 06. 2023]

2. Raspberry Pi 4: URL: https://www.raspberrypi.com/documentation/computers/os.html [Access: 25.
05. 2023].

3. K3s - Lightweight Kubernetes. URL: https://docs.k3s.io/installation [Access: 28. 05. 2023].
4. Raspberry Pi OS. URL: https://www.raspberrypi.com/software/ [Access: 25. 05. 2023].
5. Comprehensive Guide to Ultralytics YOLOv5. URL: https://docs.ultralytics.com/yolov5/ [Access: 09.

06. 2023].
6. YOLOV5. URL: https://pytorch.org/hub/ultralytics_yolov5/ [Access: 09. 06. 2023].
7. MinIO Object Storage for Kubernetes.URL:https://min.io/docs/minio/kubernetes/upstream/index.html

[Access: 12. 06. 2023].
8. Docker.URL: https://docs.docker.com/ [Access: 25. 05. 2023].

https://www.christianbaun.de/CGC23/index.html
https://www.raspberrypi.com/documentation/computers/os.html
https://docs.k3s.io/installation
https://www.raspberrypi.com/software/
https://docs.ultralytics.com/yolov5/
https://pytorch.org/hub/ultralytics_yolov5/
https://min.io/docs/minio/kubernetes/upstream/index.html
https://docs.docker.com/

