
Cloud Based Pet Detection System
Under Guidance of Prof. Dr. Christian Baun

Presented By (Group 4)
Saddam Hossain, A B M Nashrif, Md Motaleb Hossain, Omme Salma, Imrul Kayes Talukdar, Nur Uddin Syeed

Contents

1. Introduction

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Creation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

Problem Details

Sensor Node

Sensor Node should be able to detect cats
and dogs and should only send image of cat
or dog to the backend server

2

● Device preparation (OS installation,
Camera setup

● Load the trained model weight
● Create a script in Python that will

detect the image and send the date
using RESTful APIs.

Image Detection

Training a model that can detect Cats and
Dogs

1

● Used Yolo v5 Model for the training
● Used X images as training data
● Used ….
● Used ….

kubernetes cluster

Create a Cluster and install all required
backend and frontend application to get
image data and represent the data in User
interface (here frontend web page)

2

● K3S cluster setup
● Image Storage System
● Data Storage System
● Backend API service
● Frontend Web app

Contents

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Creation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

1. Introduction

Hardware & Tools

Hardware:
● Raspberry Pi4
● 4 Raspberry pi3
● Raspberry pi Camera Module v2
● TP Link Switch

Tools Used:
● Python & JavaScript
● FastAPI
● Docker
● Kubernetes (K3s)
● MinIO
● Pytorch
● Yolo v5

Hardware & Tools

Contents

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Creation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

1. Introduction

System Setup

Sensor Pi Node
With Camera

Sensor Pi Node
With Camera

K3S Cluster on Cloud

Master Node (pi3)

Worker Node1 (pi3)

Worker Node2 (pi3)

Worker Node3 (pi3)

1. Backend API service
2. Frontend
3. MySQL
4. MinIO

Network

System Architecture

Contents

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Creation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

1. Introduction

Sequence Diagram (Sensor Node)

Sequence Diagram (Sensor Node)

Capture the Image Process Image using
Trained YOLO V5 Model

Detected??
Yes -> send data
No -> Do Nothing

Sensor Node

Sequence Diagram (K3S)

Contents

1. Introduction

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Preparation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

YoloV5 Model

Dataset

https://www.kaggle.com/datasets/andrewmvd/dog-and-cat-detection/code

Dataset contains 3686 images of cat and dogs with bounding box.

YoloV5 Model

Train Batch image in Model Training

YoloV5 Model

Validation Batch image in Model Training

YoloV5 Model

YoloV5 Model

Contents

1. Introduction

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Preparation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

Sensor Node

Load the trained model

1. Capture the Image

2. Image Processor Pet (Cat / Dog) detector

Plot /
Draw on
Image

Filter
Detected

Data

3. Send The Data To
API

Detected?

Image Detection and sending
the data

Sensor Node Workflow:

● At first it loads the model we
trained to detect cat and dog

● Then its keep capturing
images (1)

● Send the image to Image
processor (2)

● If any cat or dog is detected, it
sends the data to the Backend
server through REST api

API

1. Introduction

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Preparation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

REST API communication

//Image
{"image": "base64............."

// Data
{
 "detected_at": "detection time",
 "confidences": [
 "('Animal1', 99)",
 "('Animal 2', 90)",

 "('Animal N', 89)",
]
}

Detection Time

List of detection data

Detected Image as Base64 encoded

REST API communication

Contents

1. Introduction

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Preparation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

Backend Web_App: Data Entity

Image Storage:

Contents

1. Introduction

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Preparation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

Frontend

➔ Latest Detection data can be
viewed

➔ Detected image can be
observed in the detection
detail page

Contents

1. Introduction

2. Tools and Hardware

3. Architecture

4. Sequence Diagram

5. Detection Model Preparation

6. Sensor Node

7. WebApp (REST API)

8. Data Storage

9. Frontend

10. Kubernetes and Apps Deployment

Deployment on Kubernetes

● This project is a combination of several micro services.
● It can be very easily deployed on Kubernetes cluster

This is how we did this:
1. Installed Kubernetes on 4 pi, keeping 1 master and 3 worker node
2. Dockerized WebApp and uploaded the docker image Docker hub.
3. Configured Kubernetes files for MySQL, MinIO, and WebAPP and

deployed their docker image to the Kubernetes.

kubernetes

DEMO TIME

Question??

Useful links

● Project GitHub Link: https://github.com/nuruddinsayeed/CloudApp101
● Docker Image of WebApp: https://hub.docker.com/r/nuruddinsayeed/webapp-animal_detector

https://github.com/nuruddinsayeed/CloudApp101
https://hub.docker.com/r/nuruddinsayeed/webapp-animal_detector

