
CLOUD COMPUTING CAT AND DOG DETECTION

SS23 1

Cloud Computing SS23

Automatic Cat and Dog Detection Using

Edge Computing

Under Guidance of

Prof. Dr. Christian Baun

Member Name: Sumit Chothani [1457445]

 Meet Gabani [1442735]

 Hardikkumar Suhagiya [1419315]

 Rajdeep Kachhadiya [1440737]

 Kavita Vaghasiya [1442706]

 Jay Togadiya [1413353]

 Submission Date: 14th July,2023

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 2

Index

• Team Members and Task Distribution…………………………………………………….3

1. Introduction……………………………………………………………………….………………….4

2. Architecture…………………………………………………………………………………………..4

3. Sensor Node…………………………………………………………………………………………..5

4. Object Detection Model…………………………………………………………………………6

5. Setting up K3S Cluster using Raspberry PI 3…………………………………………...6

6. REST API…………………………………………………………………………………………………9

7. Kubernetes Cluster Application………………………………………………………………9

8. Testing of cat & dog detection……………………………………………………………..12

9. GitHub Links…………………………………………………………………………………………15

10. Reference …………………………………………………………………………………………..15

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 3

• Team Members and Task Distribution

Task Distribution: - Member Name: -

Initial Hardware Setup, Testing of Hardware Hardikkumar Suhagiya,
Meet Gabani,
Jay Togadiya

Senser/Edge Node Setup,
K3S Cluster Setup

Hardikkumar Suhagiya,
Meet Gabani

Object Detection Model,
Training Of Model

Rajdeep Kachhadiya,
Sumit Chothani

Backend & Frontend API Development Rajdeep Kachhadiya,
Sumit Chothani,
Kavita Vaghashiya

User Interface development Jay Togadiya,
Kavita Vaghashiya

Docker & Minio Setup,
Sensor /Edge Node & K3s Cluster Integration

Hardikkumar Suhagiya,
Meet Gabani

Project Integration Rajdeep Kachhadiya,
Sumit Chothani,
Jay Togadiya,
Kavita Vaghashiya

Documentation Hardikkumar Suhagiya,
Meet Gabani,
Rajdeep Kachhadiya,
Sumit Chothani,
Jay Togadiya,
Kavita Vaghashiya

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 4

1. Introduction

Our intention was to create an edge computing solution to identify Cat and Dog at the

sensor node and save the data in the cloud service (MinIo).

Data is transmitted to the cloud for processing and storing in cloud computing.

Contrarily, edge computing processes data at the edge node before sending a little

portion to the cloud for storage. Compared to conventional cloud computing

strategies, edge computing has several advantages. Edge computing has lower latency

than cloud computing because data is processed at the edge node, which is closer to

the source. Less bandwidth is needed for edge computing solutions because the data

processing takes place at the edge node. Solutions for edge computing are scalable,

dependable, economical, and provide.

2. Architecture

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 5

Our Cat and Dog detection project is built as an edge computing solution. We used a

Raspberry Pi 4 single board computer (SBC) as the edge/sensor node on which our

machine learning model trained to detect Cat and Dog was deployed. The SBC is also

equipped with a Raspberry Pi 4 camera module. We also have a K3S cluster built using

4 Raspberry Pi 3 SBC’s where 1 SBC behaves as the master node and the rest 3 behave

as the worker nodes. Live detection is run using the camera module at the edge node.

Whenever a cat and Dog is detected, the frame is captured and is sent to the K3S

cluster. Master Node in K3s Work As s Control Pannal. Master node distribute a work

load in three worker nodes (knode 1, knode 2, knode 3). On the K3s cluster, we have

setup Docker. So, we can use all docker command In Master Node. In local computer,

we must build Docker image for Backend & Frontend rest API and User interface using

Dockerfile. We must push this Docker image from local computer to Docker hub. Now,

we can use docker image in k3s cluster form docker hub. We On the K3S cluster, we

have setup a MinIO database which is used to store data relevant to the detection such

as confidence level, timestamp of the capture and the image frame itself. We also have

setup a React web application on the K3S cluster, which is used to view the detected

images. To send the image from the edge node to the K3S cluster, we have used REST

API’s. The detected images along with the relevant data are sent to the REST API. Upon

receiving data, the REST API pushes the data to the MinIO database. from where we

are show live data at localhost.

3. Sensor Node
Sensor node is a Raspberry Pi 4 single board computer (SBC) with an attached

Raspberry Pi camera module 4. In our project, the sensor node is used as an edge

device to detect cat and dog, build relevant data and send it over to the REST API

running on K3S cluster.

3.1. Sensor Node Setup

To setup the sensor node, we installed Raspberry Pi OS 32 bit using the Raspberry

Pi Imager tool.

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 6

 The program has a Choose OS option where the OS can be chosen. Using the tool's Choose

Storage option, the storage, or SD card, was chosen. Once both of these are set, we can use

the tool's Write Option to write the OS to the SD card.

4. Object Detection Model

• YOLOv5

• Python Library:

OpenCV

certifi==2023.5.7

charset-normalizer==3.1.0

idna==3.4

imutils==0.5.4

numpy==1.24.3

opencv-python==4.7.0.72

Pillow==9.5.0

requests==2.31.0

urllib3==2.0.3

python-dotenv==1.0.0

• Roboflow:

Here, we used it’s for train model.

5. Setting up K3S Cluster using Raspberry Pi 3
As discussed in the architecture we had used 4 different Raspberry Pi 3 SBC to setup a

lightweight Kubernetes cluster or K3S cluster. The cluster was created with 1 master and 3

worker nodes.

5.1. Setting up all Raspberry Pi 3

• All the Raspberry Pi 3 was equipped with 32GB SD cards, we manually flashed

32- bit Raspberry Pi OS with help of Raspberry Pi Imager v1.7.3.

• Download Raspberry Pi Imager for your computer and insert an empty SD card

to your PC.

• In the Pi Imager application, we chose 32-bit Raspberry Pi OS (Debian Bullseye)

and configured the hostname, enabled SSH and set password for

authentication in the advanced options as shown below image.

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 7

• Once values are configured and saved, select storage option as the SD card and

click on ‘write’ button that fill flash the SD card with chosen OS.

• We repeated this process for all 4 SD cards and named our hosts as kmaster,

knode1, knode2, knode3 respectively.

• Insert all the SD cards back to the Raspberry Pi and power up and connect them to

your network via LAN switch.

5.2. Setting up k3s cluster

• Install Docker on Master Node:

sudo apt install docker

sudo systemctl start docker

sudo systemctl enable docker

sudo systemctl status docker

• Use command:

curl -sfL https://get.k3s.io | sh -s - --docker

• After successful run, this will start K3S service, and it will automatically

create few configurations file as well.

• Now check if the master node is ready using the command:

sudo kubectl get nodes

• To add agent or worker nodes, first we will generate token from master, this

token will then be used by all agent nodes while creating the K3S cluster.

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 8

• Run below command and save the generated in a text editor:

 sudo cat /var/lib/rancher/k3s/server/node-token

• Also check the Master IP using the command

hostname -I | awk '{print $1}'

s

• Now SSH each worker nodes and following command:

Install docker In all three worker node using docker installation command.

curl -sfL http://get.k3s.io | K3S_URL=http://<master_IP>:6443

K3S_TOKEN=<join_token> sh -s - --docker

• Now repeat this for all 3 worker nodes.

• Once done our K3S cluster is ready and we can check again in master

node by using the command:

sudo kubectl get nodes -o wide

• After successful deployment status of all pods will look similar to below:

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 9

6. REST API:
Technology we have used:

• Django: Django is a popular Python web framework that provides a robust set of

tools and libraries for building web applications, including APIs (Application

Programming Interfaces). It follows the model-view-controller (MVC) architectural

pattern and emphasizes code reusability, simplicity, and rapid development.

• Django REST Framework: Django REST Framework simplifies API creation in Django

by providing serialization, authentication, and permission handling, along with

view sets and routers for CRUD operations. It also offers request/response

handling, pagination, filtering, and built-in API documentation, making API

development faster and more efficient.

• Django Filter: Django Filter is a robust package that simplifies API development in

Django by enabling effortless filtering of query sets based on user-defined

parameters. With its declarative syntax for defining filters, users can easily apply

complex filtering operations, making API creation more straightforward and

efficient.

• REST API: REST API uses Https requests to access and use data. There are some

methods which are Get, Post, Put, Delete used to read, delete, update, and create

data as needed.

• Docker: Docker simplifies API development with Django REST Framework by

providing a containerized environment that ensures consistent and reproducible

deployments. It streamlines the setup process, isolates dependencies, and allows

easy scaling and deployment across different environments, enhancing the

development and deployment experience.

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 10

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 11

7. Kubernetes Cluster Application

7.1. Web App Frontend:

Web Application is Fronted user interface which is showing the detected

images of pet either cat or dog on the web page. The images are retrieving

from the MinIo to web browser.

7.2. Web App Backend:

Web Application backend is used to store images of cat and dog to later display

in the frontend.

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 12

7.3. Minio Object Storage:

This is a third-party open-source application which is used in the system to

store and access objects received from sensors. MinIO is a high-performance

object storage solution that provides an Amazon Web Services S3-compatible

API and supports all core S3 features.

7.4. MinIO Object Storage Deployment:

• Go to directory: project /minio_k8s

Alternatively, you can execute below mentioned commands.

sudo kubectl apply -f minio-dev.yml

sudo kubectl apply -f minio.yml

sudo kubectl apply -f minio-service.yml

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 13

8. Testing of Cat and Dog Detection: -
After all setup and check all pods are running and services are active as described in

all above section.

Go to Directory: cat_dog_detector and then write this following command in

Raspberry Pi 4:

Python3 cat_or_dog_detection.py

After this command camera frame will open and it look like this:

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 14

Frontend: -

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 15

CLOUD COMPUTING CAT AND DOG DETECTION

SS23 16

9. GitHub Links

GitHub Link for object detection model: -

https://github.com/rajdeep9603/cat_dog_detector.git

GitHub Link for Backend & Frontend API: -

https://github.com/rajdeep9603/cat_dog_backend.git

GitHub Link for User Interface (Frontend): -

https://github.com/rajdeep9603/cat_dog_backend.git

10. References

1. https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

2. https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/

3. https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-

with-k3s-76224788576c

4. https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-

detection-model-with-yolov7/

5. https://www.raspberrypi.com/documentation/computers/configuration.html

6. https://docs.docker.com/docker-hub/

7. https://kubernetes.io/

https://github.com/rajdeep9603/cat_dog_detector.git
https://github.com/rajdeep9603/cat_dog_backend.git
https://github.com/rajdeep9603/cat_dog_backend.git
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/
https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c
https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c
https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-model-with-yolov7/
https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-model-with-yolov7/
https://docs.docker.com/docker-hub/
https://kubernetes.io/

