
Automatic Cat and Dog Detection
Using Edge Computing

Member Name: Sumit Chothani [1457445]

Hardikkumar Suhagiya [1419315]

Rajdeep Kachhadiya [1440737]

Meet Gabani [1442735]

Kavita Vaghasiya [1442706]

Jay Togadiya [1413353]

Under Guidance of: -

Prof. Dr. Christian Baun

Content

Team Members and Task Distribution

 Introduction

Architecture

Sensor/Edge Node Deployment

Object Detection Model

Setting up K3S Cluster using Raspberry Pi 3

REST API

Kubernetes Cluster Application

Demo

Reference

Team Members and Task Distribution

Task Distribution: - Member Name: -

Initial Hardware Setup, Testing of Hardware Hardikkumar Suhagiya ,Meet Gabani, Jay Togadiya

Senser/Edge Node Setup, K3S Cluster Setup Hardikkumar Suhagiya,Meet Gaban

Object Detection Model, Training Of Model Rajdeep Kachhadiya, Sumit Chothani

Backend & Frontend API Development Rajdeep Kachhadiya, Sumit Chothani, Kavita Vaghashiya

User Interface development Jay Togadiya, Kavita Vaghashiya

Docker & MinIo Setup, Sensor /Edge Node & K3s Cluster

Integration

Hardikkumar Suhagiya, Meet Gabani

Project Integration Rajdeep Kachhadiya,Sumit Chothani,Jay Togadiya, Kavita

Vaghashiya

Documentation Hardikkumar Suhagiya, Meet Gabani, Rajdeep Kachhadiya,

Sumit Chothani, Jay Togadiya,Kavita Vaghashiya

Introduction

• Data is transmitted to the cloud for processing and storing in cloud computing.

• edge computing processes data at the edge node before sending a little portion
to the cloud for storage.

• Compared to conventional cloud computing strategies, edge computing has
several advantages.

• Edge computing has lower latency than cloud computing because data is
processed at the edge node, which is closer to the source.

Architecture

Sensor/Edge Node Deployment

• Sensor node is a Raspberry Pi 4 single board computer (SBC) with an attached Raspberry Pi camera module 4.

• the sensor node is used as an edge device to detect cat and dog, build relevant data and send it over to the REST
API running on K3S cluster.

• To setup the sensor node, we installed Raspberry Pi OS 32 bit using the Raspberry Pi Imager tool.

• The program has a Choose OS option where the OS can be chosen. Using the tool's Choose Storage option, the
storage, or SD card, was chosen. Once both of these are set, we can use the tool's Write Option to write the OS to
the SD card.

Object Detection Model

• We trained a machine learning model using YOLOv5 framework for
automatic cat and dog detection on the sensor node.

• We used Roboflow to train machine learning models as it offers free
computing resources

• Used 500+ cat and dog images and their labels to train model

• Splitted whole Dataset in a 70:30% ratio

Setting up K3S Cluster using Raspberry Pi 3

• As discussed in the architecture we had used 4 different Raspberry Pi 3 SBC to setup a lightweight
Kubernetes cluster or K3S cluster. The cluster was created with 1 master and 3 worker nodes.

• All the Raspberry Pi 3 was equipped with 32GB SD cards, we manually flashed 32- bit Raspberry Pi OS with
help of Raspberry Pi Imager v1.7.3.

• In the Pi Imager application, we chose 32-bit Raspberry Pi OS (Debian Bullseye) and configured the
hostname, enabled SSH and set password for authentication in the advanced options as shown below image.

• We repeated this process for all 4 SD cards and named our hosts as kmaster, knode1, knode2, knode3
respectively

• Setting up k3s cluster

 Install Docker on Master Node and all three worker node using this Command

sudo apt install docker

sudo systemctl start docker

sudo systemctl enable docker

sudo systemctl status docker

 Set up k3s server in master node

curl -sfL https://get.k3s.io | sh -s - --docker

sudo kubectl get nodes

 Setup k3s agent in worker node

sudo cat /var/lib/rancher/k3s/server/node-token

curl -sfL http://get.k3s.io | K3S_URL=http://<master_IP>:6443 K3S_TOKEN=<join_token> sh -s - --
docker

sudo kubectl get nodes -o wide

• After successful deployment status of all pods will look similar to below: -

REST API

• Technology we have used:

• Django

• Django REST Framework

• Django Filter

• REST API

• Docker:

• Django REST Framework converts the objects into data types that are understandable by javascript and
front-end frameworks.

• A REST APIis a popular way for systems to expose useful functions and data.

• REST, which stands for representational state transfer, can be made up of one or more resources that can be
accessed at a given URL and returned in various formats, like JSON.

API Working

MinIo and Django Database

Kubernetes Cluster Application

• Docker

 On the K3s cluster, we have setup Docker.

 So, we can use all docker command In Master Node.

 In local computer, we must build Docker image for Backend & Frontend rest API and User interface
using Dockerfile.

 We must push this Docker image from local computer to Docker hub.

• Kubernetes Cluster Application’s docker Image

Web App Frontend:-

Web Application is Fronted user interface which is showing the detected images of pet either cat or
dog on the web page. The images are retrieving from the MinIo to web browser.

Web App Backend: -

Web Application backend is used to store images of cat and dog to later display in the frontend.

MinIo Object Storage

• This is a third-party open-source application which is used in the system to store and access objects received
from sensors. MinIO is a high-performance object storage solution that provides an Amazon Web Services
S3-compatible API and supports all core S3 features.

MinIO Object Storage Deployment:

Go to directory: project /minio_k8s

Alternatively, you can execute below mentioned commands.

sudo kubectl apply -f minio-dev.yml

sudo kubectl apply -f minio.yml

sudo kubectl apply -f minio-service.yml

• MinIo Console

Demo

• After all setup and check all pods are running and services are active as described in all above section.

• Go to Directory: cat_dog_detector and then write this following command in Raspberry Pi 4:

• Python3 cat_or_dog_detection.py

• After this command camera frame will open and it look like this:

• Frontend: -

References

• https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

• https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/

• https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c

• https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-model-with-
yolov7/

• https://www.raspberrypi.com/documentation/computers/configuration.html

• https://docs.docker.com/docker-hub/

• https://kubernetes.io/

https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/
https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c
https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-model-with-yolov7/
https://docs.docker.com/docker-hub/
https://kubernetes.io/

Thank you

