

Cloud Computing - Dog Detection Software
Group 7

Jemish Moradiya

jemish.moradiya@stud.fra-uas.de
Matriculation Number: 1417346

Meet Kiritbhai Makadiya

meet.makadiya@stud.fra-uas.de
Matriculation Number: 1422302

Barun Chakroborty

barun.chakroborty@stud.fra-uas.de
Matriculation Number:

Md Shahinur Rahman

md.rahman4@stud.fra-uas.de
Matriculation Number: 1396467

mailto:jemish.moradiya@stud.fra-uas.de
mailto:meet.makadiya@stud.fra-uas.de
mailto:barun.chakroborty@stud.fra-uas.de
mailto:md.rahman4@stud.fra-uas.de

Index

1. Introduction

2. Architecture Diagram

3. Project Configuration

3.1 Hardware Configurations

3.2 Raspberry Pi 3 for Cluster

3.3 Software Configurations

3.4 Cluster Configurations

3.5 To install the software components on the cluster

4. Implementation

4.1 Camera Module and Edge Node Set Up for Object Detection

4.2 Cluster Configuration

5. Summary

6. Challenges

References

1. Introduction

Cloud computing offers a wide array of services, including storage, databases, networking, processing
power, software, analytics, and intelligence, all delivered over the internet ("the cloud"). This
technology enables faster innovation and flexible resource allocation.

By leveraging cloud computing, a Raspberry Pi-based object detection system can be implemented.
Raspberry Pi, a low-cost single-board computer, can run machine learning algorithms and other
software applications. When connected to sensors and cameras, Raspberry Pi can collect data and store
it in the cloud.

In a dog detection system, a Raspberry Pi can be connected to a camera module to capture images or
videos. These images can be processed using trained machine-learning models to detect and identify
dogs. The results of the dog detection can then be stored in a MinIO server on the cloud, enabling
further analysis, reporting, and display of the detected images on a user interface.

The data collected, combined with the images, provides a comprehensive understanding of the dog
population. This data can be used to train machine learning models for more accurate dog detection
and to study the behavior of rats in a given environment.

Leveraging cloud computing in a dog detection system brings several advantages, such as scalability,
accessibility, and cost-effectiveness. Additionally, it eliminates the need for expensive hardware and
storage solutions, making the dog detection system more affordable and accessible to a wider range of
users.

2. Architecture Diagram

Figure 1: Architecture Diagram

The user interface through which users interact with the dog detection software. It could be a web-
based interface, a mobile app, or any other form of user interface. We used it for our project MQTT.
The MQTT is a very strong communication hub that acts as a central messaging hub, facilitating
communication between the user interface and the Raspberry Pi devices. It receives messages
published by the Raspberry Pi devices and routes them to the appropriate subscribers. The cloud
computing infrastructure provides the computational power and scalability required for processing dog

detection requests. It can include virtual machines, containers, serverless functions, or any other cloud
resources. Cloud services, running on the cloud computing infrastructure, act as subscribers to the
MQTT broker. They subscribe to specific MQTT topics to receive the dog image data published by the
Raspberry Pi devices.

On the other hand, The MinIO cluster is responsible for storing the dog image datasets, training data,
and other necessary files. It provides reliable and scalable object storage across multiple nodes,
ensuring data redundancy and high availability. Raspberry Pi devices serve as edge devices in the
architecture. They capture or receive dog images and publish them to the MQTT broker. These devices
run the dog detection software locally for initial processing. The flow of the dog detection process
involves the user interface capturing or uploading an image. The image is then published to the MQTT
broker. The cloud services, acting as subscribers, receive the image data, process it using the dog
detection software, and provide the detection results. The MinIO cluster stores the dog image datasets
and other necessary files required for processing.

3. Project Configuration

3.1 Hardware Configurations

Figure 2: Raspberry Pi 4 (Sensor Node)

The Raspberry Pi 4 is a cost-effective and high-performance single-board computer developed by the
Raspberry Pi Foundation. It finds applications in various fields like home automation, computer vision,
IoT, and artificial intelligence. The Raspberry Pi 4 supports different operating systems such as
Raspbian, Debian Ubuntu, Windows, and Linux, and it is compatible with popular programming
languages like Python, C, C++, Java, and more.

In the context of live dog detection, the Raspberry Pi 4 serves as an edge node, running the Raspberry
Pi 4 BULLSEYE 64-bit Debian OS. By utilizing the Raspberry Pi 4 as an edge node, the system benefits
from reduced data transmission to the cloud, lower latency, bandwidth savings, and faster data
processing. This approach allows the dog detection software to perform real-time analysis on the
Raspberry Pi 4 itself, without relying heavily on cloud-based processing, making it more efficient and
responsive.

3.2 Raspberry Pi 3 for Cluster: Cloud computing refers to the delivery of computing resources, such as
storage, processing power, and software applications, over the internet. In this context, dog detection
software utilizing a cluster configuration of three Raspberry Pi 3 devices can leverage cloud computing
to enhance its capabilities. The cluster configuration allows for distributed processing and increased
computational power, enabling more efficient and accurate dog detection algorithms and analysis.

Figure 3: Raspberry Pi Camera Module v2

The Raspberry Pi Camera Module v2 is an official camera module provided by the Raspberry Pi
Foundation. It is specifically designed for Raspberry Pi devices and offers excellent capabilities for
capturing high-quality video and still images. The camera module features a Sony IMX219 8-megapixel
sensor, which delivers high-resolution images and provides a wide field of view.

In the context of dog detection, the Camera Module v2 is utilized to capture frames from the live feed.
It is connected to the Raspberry Pi using a ribbon cable, allowing the Raspberry Pi to access the camera's
imaging capabilities. By leveraging the camera module, the system can capture real-time video frames,
which can then be processed using the dog detection software to detect the presence of dogs.

3.3 Software Configurations

Python: Python is a widely used, high-level programming language that is well-suited for object
detection tasks in computer vision. Raspberry Pi supports Python and comes with Python pre-installed
in its operating system.

For object detection in computer vision, popular frameworks like TensorFlow, PyTorch, and OpenCV
provide Python APIs that make it easy to train and deploy object detection models. These frameworks
offer a range of tools and libraries for building and working with object detection models.

Python's popularity extends to the Raspberry Pi ecosystem, where many libraries and packages are
specifically designed for Raspberry Pi development. These libraries provide functionalities for accessing
the GPIO (General Purpose Input/Output) pins, controlling the Raspberry Pi Camera Module, working
with sensors, and more. With Python on Raspberry Pi, developers have a rich ecosystem of tools and
resources to leverage for object detection and other projects.

Python: OpenCV is indeed a widely-used open-source computer vision library, and it is highly suitable
for running on the Raspberry Pi 4. By installing the OpenCV library on the Raspberry Pi 4, developers
can leverage its extensive collection of algorithms and functions for image and video processing,
including object detection capabilities.

One significant advantage of using OpenCV on the Raspberry Pi 4 is its improved performance.
Compared to earlier models, the Raspberry Pi 4 is equipped with a more powerful CPU and GPU, making
it better equipped to handle computationally demanding computer vision tasks. This increased
processing power enables smoother and faster execution of object detection algorithms, enhancing the
overall performance of the system.

By utilizing OpenCV on the Raspberry Pi 4, developers can tap into the library's robust features and
optimize their object detection workflows for real-time applications. The combination of OpenCV and
the Raspberry Pi 4's improved hardware capabilities allows for more advanced and efficient computer
vision processing on this platform.

YOLO V5: YOLO V5 (You Only Look Once version 5) is indeed a state-of-the-art real-time object
detection model that has gained significant popularity in computer vision applications. While YOLO V5
typically requires a powerful GPU for optimal performance, it is still feasible to use it on the Raspberry
Pi 4 for object detection tasks.

To utilize YOLO V5 on the Raspberry Pi 4, an OpenCV library that includes the implementation of the
YOLO V5 algorithm is required. This library provides the necessary tools and functions to train and
detect objects, including rats, from a live camera feed.

In your project, you can leverage the YOLO V5 algorithm implemented in OpenCV to train a dog
detection model and perform real-time object detection on the Raspberry Pi 4. By utilizing the
computational capabilities of the Raspberry Pi 4, you can apply the YOLO V5 model to analyze the live
camera feed and detect the presence of rats.

While the Raspberry Pi 4 may not offer the same level of performance as a powerful GPU, it can still
handle object detection tasks with YOLO V5, albeit potentially at a slightly reduced speed. It is important
to optimize the model and fine-tune the performance parameters to ensure efficient execution on the
Raspberry Pi 4's hardware.

Minio: The Minio Client library is a software library designed to interact with Minio, an object storage
server. It offers a set of straightforward APIs that enable developers to access Minio and perform
various operations. These operations can include tasks such as listing buckets, creating new objects,
deleting objects, and more.

With the Minio Client library, developers can easily integrate Minio into their applications and leverage
its object storage capabilities. The library abstracts away the complexity of interacting with the Minio
server and provides a simplified interface for accessing and managing objects stored in Minio.

By using the Minio Client library, developers can efficiently interact with Minio and perform necessary
operations for their applications, such as managing data stored in Minio buckets or creating new objects
within the storage server. This simplifies the development process and allows for seamless integration
with Minio in a variety of use cases.

3.4 Cluster Configurations

Raspberry Pi 4 model: The cluster hardware consists of four Raspberry Pi 3 devices. Among these
devices, one is designated as the master node, and the remaining three are configured as worker nodes.
Each Raspberry Pi 3 device is equipped with a 32 GB microSD card, on which the appropriate operating
system will be installed.

The master node acts as the central control unit for the cluster, coordinating and managing tasks across
the worker nodes. The worker nodes, on the other hand, perform the assigned computing tasks and
communicate with the master node.

By setting up a cluster with Raspberry Pi 3 devices, you can distribute the workload and take advantage
of parallel processing capabilities. This configuration allows for efficient and scalable computation,
making it suitable for various applications, including data processing, distributed computing, and other
computationally intensive tasks.

TP-LINK Switch: In addition to the Raspberry Pi devices, the hardware setup includes a TP-Link Switch.
The TP-Link Switch is used to facilitate connectivity among the Raspberry Pi devices in the cluster. Each
Raspberry Pi device is connected to the switch via its Ethernet ports.

By utilizing the TP-Link Switch, a centralized network connection is established, allowing for efficient
communication and data transfer between the Raspberry Pi devices. The switch acts as a splitter,
enabling multiple devices to connect to a single network infrastructure.

With the Ethernet connections, the Raspberry Pi devices in the cluster can seamlessly exchange data,
synchronize tasks, and collaborate effectively. This setup ensures stable and reliable network
connectivity, enabling efficient distributed computing within the cluster.

Fritz-Box: The hardware setup also includes a Fritz Box, which serves as a router for the cluster. The
Fritz Box is responsible for providing network services, including IP address configuration and DHCP
(Dynamic Host Configuration Protocol) functionality.

With the Fritz Box, the IP addresses of the Raspberry Pi devices in the cluster can be configured. The
router assigns unique IP addresses to each device, allowing them to communicate and connect within
the network. The DHCP functionality automates the process of IP address assignment, simplifying the
setup and management of the network.

By utilizing the Fritz Box router, the cluster hardware setup benefits from a well-configured network
infrastructure. The router ensures that the Raspberry Pi devices can establish reliable connections,
communicate seamlessly, and access the necessary network resources.

3.5 To install the software components on the cluster

Before setting up the cluster, the following software deployment and configurations are done on the
devices:

OS Installation: The Raspberry Pi imager tool is used to install the operating system (OS) on the SD
cards. The chosen OS is the headless (lite) version of the 64-bit Debian Bullseye without a desktop
environment. The decision to use the headless version is made to avoid overloading the devices and
ensure optimal performance. During the OS image setup, SSH connection details can be added for later
access to the Raspberry Pi devices via SSH protocol.

SD Card Setup: After installing the OS on the SD cards, they are plugged into the Raspberry Pi devices.
Once the devices are ready, they are connected to the network through the router, which helps in
identifying them on the network. Successful login via SSH allows for further configuration.

Package Update: After SSH access is established, the first step is to run the package update and upgrade
commands to ensure that the devices have the latest packages and updates available.

Configuration Update: The /boot/cmdline.txt file needs to be modified by appending the following text
at the end: cgroup_memory=1 cgroup_enable=memory. After saving the changes, the Raspberry Pi
devices need to be restarted.

Static IP Setup: Setting up static IP addresses for all the nodes in the cluster is essential for maintaining
stable configurations. The /etc/dhcpcd.conf file is updated on each available node (master and worker
nodes) to define the static IP configurations. This ensures that each Raspberry Pi device retains the
same IP address whenever it boots up and connects to the network.

4 Implementation

4.1 Camera Module and Edge Node Set Up for Object Detection

To set up a Raspberry Pi 4 as an edge node with the Pi Camera Module v2, the following steps
are typically followed:

Raspberry Pi 4 BULLSEYE 64-bit Debian OS: To install and boot the Raspbian OS (Raspberry Pi 4
BULLSEYE 64-bit Debian OS) on a Raspberry Pi 4, follow these steps:

1. Download Raspbian OS: Visit the official Raspberry Pi website and download the
Raspbian OS image suitable for Raspberry Pi 4.

2. Flash the SD Card: Use the Raspberry Pi imager tool or equivalent software to flash the
Raspbian OS image onto the SD card. Insert the SD card into the Raspberry Pi 4.

3. Power On the Raspberry Pi 4: Connect the necessary peripherals (keyboard, mouse, and
display) to the Raspberry Pi 4. Power it on by plugging it into a power source.

4. Boot into Desktop Environment: After the Raspberry Pi 4 is powered on, it should start
booting into the Raspbian OS. It will take a few moments to initialize. Eventually, the
Raspberry Pi 4 should reach the desktop environment.

5. Access Desktop Environment via SSH (PuTTY): If we want to access the Raspberry Pi 4's
desktop environment remotely, we can use SSH. Ensure that the Raspberry Pi 4 is
connected to the same network as your computer. Use an SSH client like PuTTY to
establish an SSH connection to the Raspberry Pi's IP address. Login with your username
and password, and we can access the Raspberry Pi 4's desktop remotely.

6. Access Desktop Environment via VNC Viewer: Another way to access the Raspberry Pi
4's desktop remotely is by using VNC Viewer. Make sure VNC is enabled on the Raspberry
Pi 4 by going to the Raspberry Pi Configuration settings. Then, use a VNC viewer
application on your computer to connect to the Raspberry Pi's IP address. Enter the
appropriate credentials, and we can remotely access the Raspberry Pi 4's desktop
environment.

Connect the Pi Camera Module v2:

Figure 4: Connect the Raspberry Pi Camera Module v2

To connect the camera module to the Raspberry Pi 4 and enable the camera interface, follow
these steps:

1. Connect the Camera Module: Make sure the Raspberry Pi 4 is powered off and not
connected to any power source. Connect the camera module ribbon cable to the camera
port on the Raspberry Pi 4 board. Ensure it is securely inserted in the correct orientation.

2. Power On the Raspberry Pi 4: After connecting the camera module, power on the
Raspberry Pi 4 by plugging it into a power source.

3. Enable Camera Interface: Access the Raspberry Pi Configuration settings by running the
command sudo raspi-config in the terminal. This will open the Raspberry Pi Software
Configuration Tool.

4. Navigate to Camera Settings: Inside the Raspberry Pi Configuration Tool, use the arrow
keys to navigate to "Interfacing Options" and press Enter.

5. Enable Camera: In the Interfacing Options menu, scroll down to "Camera" and press
Enter. A prompt will appear asking if we want to enable the camera interface. Select "Yes"
and press Enter to enable it.

6. Update raspi-config: Once the camera interface is enabled, update the raspi-config
settings by running the command sudo raspi-config in the terminal again.

7. Update Start X Setting: Inside the raspi-config menu, navigate to "System Options" and
press Enter. Then, scroll down to "Boot / Auto Login" and press Enter. In the next screen,
select "Desktop Autologin" and press Enter. This will update the raspi-config with the
setting to start the X desktop environment on boot.

8. Reboot the Raspberry Pi 4: After making these changes, exit the raspi-config menu and
reboot the Raspberry Pi 4 for the changes to take effect. we can do this by running the
command sudo reboot in the terminal.

OpenCV and Python Packages Setup: Python is included as part of the preinstalled Desktop
version of Raspberry Pi OS on the Raspberry Pi 4. To enable object detection capabilities,
dependencies such as NumPy and OpenCV 4.7.0 are installed. The installation of these
dependencies allows for performing object detection tasks.

In order to upload the detected image to MinIO, the Minio Client library for Python is installed.
This library enables interaction with the Minio server directly from Python code. To install
NumPy, we can use the following commands:

NumPy installation:

(-) Install the pip package manage

sudo apt-get install python3-pip

(-) Use pip to install Numpy

pip3 install numpy

OpenCV Installation following commands are executed [5]

(-) Install minimal prerequisites

sudo apt update sudo apt install -y cmake g++ wget unzip

(-) Download and unpack sources

wget -O opencv.zip https://github.com/opencv/opencv/archive/4.x.zip unzip opencv.zip

https://github.com/opencv/opencv/archive/4.x.zip

(-) Create build directory

mkdir -p build cd build

(-) Configure

cmake ../opencv-4.x

(-) Build

cmake --build .

MinIO python library installation, the following command is used.

(-) Use pip to install Minio Client Library

pip install minio

4.2 Cluster Configuration

Docker Container Setup for master node: To set up a Raspberry Pi cluster for this project, using
Docker as the runtime container is preferred due to its widespread adoption and
standardization for container images and runtime environments. By default, k3s uses containers
as the container runtime. However, it can be changed to Docker by specifying the Docker
runtime option during the k3s setup on each node.

To make Docker available for use, we can use one of Rancher's scripts to install Docker by
executing the following command:

 curl https://releases.rancher.com/install-docker/20.10.sh | sh

This command fetches the script from the specified URL and executes it using the sh command.

After Docker is successfully installed, we can proceed with setting up k3s on the master node
using the following command:

 curl -sfL https://get.k3s.io | sh -s - --docker

This command downloads the k3s installation script and executes it with the --docker flag to
specify the Docker runtime.

Once the k3s service is up and running on the master node, the next step is to extract the token
from the master node. This token will be used while setting up the worker nodes. The token can
be found at the location /var/lib/rancher/k3s/server/node-token. we can retrieve the token using
various methods, such as reading the file directly or using commands like dog or scp to transfer
the token to another node.

Remember to substitute the necessary values and adapt the commands according to your
specific setup and requirements.

Docker Container Setup for worker node: To set up a worker node for the k3s service in the
Raspberry Pi cluster, we can use the following command. Please note that the Docker runtime
should already be available on the worker node. If not, refer to the previous section for
instructions on downloading the Docker runtime.

https://releases.rancher.com/install-docker/20.10.sh
https://get.k3s.io/

 curl -sfL https://get.k3s.io | K3S_URL=https://<ip-address>:6443 K3S_TOKEN=<node-token> sh -s - --
docker

Kubectl Utility Configuration:

command:
 Sudo kubectl get pods - wide

To use the kubectl utility without physically logging into the Raspberry Pi, we can copy the
contents of the file /etc/rancher/k3s/k3s.yaml from the master node to your local kubectl config
file.
3

Follow these steps:

1. Copy the contents of the file /etc/rancher/k3s/k3s.yaml from the master node.
2. Open your local kubectl config file. The default location for the config file is ~/.kube/config.
3. Replace the value of the server field in the config file. Change https://127.0.0.1:6443 to the

actual IP address of the Raspberry Pi running the master node. This ensures that kubectl
communicates with the correct Kubernetes API server.

After making these changes, we should be able to use the kubectl utility from your local machine
to interact with the Kubernetes cluster.

Deploying of MinIO in Cluster: MinIO was chosen as the database for this image detection
software due to its specific design for handling the storage of objects, particularly images.
Several factors were considered before selecting MinIO, including scalability, resilience, and the
availability of a RESTful API specifically tailored for use in a Kubernetes cluster.

The deployment of MinIO is done using a deployment artefact, and a service is created to expose
access to the command-line interface. MinIO offers multiple modes for setup in a cloud network.
In this project, the Single Node Single Drive mode is utilized. This mode requires fewer hardware
resources compared to the Multi-Node Multi-Drive mode, which involves synchronizing multiple
instances of the database running on the cluster. Although the Multi-Node Multi-Drive mode
was experimented with, due to the challenges faced and the time constraints of the project, the
decision was made to implement the Single Node Single Drive mode.

For detailed information and configuration settings, we can refer to the YAML file available in
the GitHub repository at the following location: https://github.com/minio/minio

Minio over Kubernetes Service Configuration: At our project, MinIO is made available through
a Kubernetes service, which is beneficial for testing and integration purposes. The service allows
access to the MinIO Command Line UI from outside the cluster network, enabling easier
management and interaction with the MinIO database.

https://get.k3s.io/
https://127.0.0.1:6443/
https://github.com/minio/minio

The RESTful API provided by MinIO is utilized in this project to establish a connection between
the Edge Node and the MinIO database. This connection enables seamless uploading of images
from the Edge Node directly to the MinIO database, leveraging the capabilities of the MinIO API
for efficient storage and retrieval of objects.

By utilizing the MinIO RESTful API and the Kubernetes service, the project achieves a streamlined
workflow for uploading images to the MinIO database and leveraging its features for object
storage and retrieval.

MinIO with persistent volumes Activation: Using persistent volumes is highly recommended to
ensure data availability in scenarios where the POD running the MinIO server crashes for any
reason. By utilizing persistent volumes, data loss can be prevented in cloud-based
infrastructures.

Once the MinIO service is up and running, we can access it using the following command:
 Sudo docker pull minio/minio

 - kubectl get services

This command retrieves information about the services running in the Kubernetes cluster. It will
display a list of services, including the MinIO service, along with details such as the service name,
type, cluster IP, and external IP (if applicable).

By running this command, we can obtain the necessary information to connect to and interact
with the MinIO service in the Kubernetes cluster.

Mqtt:

MQTT is a lightweight messaging protocol for efficient communication between devices. It
follows a publish-subscribe architecture, supports multiple Quality of Service levels, and
operates asynchronously. MQTT is designed to have a small footprint and is widely adopted in
IoT and other industries. It offers scalability, persistent sessions, security features, and is known
for its simplicity and efficiency.

Model Training: For object detection, the YOLO V5 model is commonly employed. YOLO, an
acronym for We Only Look Once, is a real-time object recognition system capable of identifying
multiple objects within a single frame. In comparison to other recognition systems, YOLO
provides faster and more accurate object recognition.

 One crucial aspect of object detection is having high-quality labeled images for training
data. we can find labeled datasets on websites like https://universe.roboflow.com/,
which may meet your requirements. Alternatively, we can create your own labeled
dataset using available tools. One recommended tool for labelling is Yolo Label, which can
be found at https://github.com/developer0hye/Yolo-Label.

 After labelling the objects in your dataset, we should have a text file that contains the
bounding box coordinates and labels for each object. The format of the label file can vary
depending on the version of YOLO we are using. In YOLO V5, the label file typically follows
the Darknet format, where each line represents an annotated object in an image. The
format is as follows: <object-class> <x_center> <y_center> <width> <height>

Here, <object-class> refers to the label or class of the object, <x_center> and <y_center>
represent the normalized coordinates of the object's center relative to the image width
and height, and <width> and <height> represent the normalized width and height of the
bounding box, also relative to the image dimensions.

For example, a line in the label file for an object labeled as "dog" with a bounding box
centered at (0.5, 0.6) and dimensions of (0.3, 0.2) would look like this: dog 0.5 0.6 0.3 0.2

It's important to note that the specific format of the label file may vary depending on the
tools or scripts we use for labelling and the specific implementation of YOLO we are
working with. Therefore, it's recommended to refer to the documentation or guidelines
specific to your chosen labelling tool and YOLO version.

Model Training: The parameter "subdivisions" in the yolov5-custom.cfg file refers to the
number of mini-batches that a complete batch is divided into during training. Let's consider an
example where the batch size is set to 52. This means that for each training iteration, 52 images
will be loaded.

If the subdivision value is set to 4, it means that the batch of 52 images will be split into 4 mini-
batches. Each mini-batch will contain 52/4 = 13 images. These 13 images will be processed
together as a mini-batch, and this process will be repeated until the entire batch is completed.

The size of the subdivision can be adjusted based on the available GPU memory. If the GPU has
limited memory, a higher subdivision value can be set to process fewer images per mini-batch,

https://github.com/developer0hye/Yolo-Label

reducing the memory requirement. On the other hand, if the GPU has ample memory, a lower
subdivision value can be used, allowing for more images to be processed in each mini-batch.

When modifying the yolov5-custom.cfg file, we can make changes to the subdivision parameter
based on your GPU memory capacity and requirements. It's important to find the right balance
to ensure efficient training without running out of memory. Here is a paraphrased explanation
of the parameters in the yolov5-custom.cfg file we provided:

- classes: This parameter defines the number of classes or types of objects that the model can
detect. In this case, there is 1 class.

- max_batches: The training process will run for a total of 3000 iterations or batches.

- batch: Each training batch will contain 64 samples or images.

- subdivisions: The batch is divided into 16 blocks or mini-batches, which are processed in
parallel on the GPU.

- width: The network size for input images will be 416 pixels in width.

- height: The network size for input images will be 416 pixels in height.

- channels: The input images will be converted to 3 channels during training and detection
(typically Red, Green, and Blue channels).

- momentum: This parameter determines the accumulation of movement or how much the
history affects the further weight changes during optimization. A value of 0.949 is used here.

- decay: The decay parameter diminishes the weights to avoid having excessively large values.
It is set to 0.0005.

- learning_rate: The initial learning rate for the training process is 0.001.

- steps: These are checkpoints or specific iterations at which the learning rate will be adjusted.
In this case, scales will be applied at iterations 640 and 720.

- scales: The scales parameter determines the coefficients at which the learning rate will be
multiplied at the specified checkpoints. It controls how the learning rate changes during
increasing iterations during training. Here, a scale of 0.1 is used for both checkpoints.

These parameters collectively define the configuration and settings for the YOLO V5 model
during training.

Edge Node for Dog Detection:

Figure 5: Dog Detection at Edge Node

The concept of dog detection at the edge node, based on the reference "Object detection using
deep learning with OpenCV and Python", has been implemented using multithreading in Python
and OpenCV. The architecture consists of two threads: Thread 1 captures the live feed and
processes one frame per second, adding it to a queue. Thread 2 fetches a frame from the queue
and applies the YOLO V4 detection model to it.

In the YOLO V4 detection model, the weights, configuration, and classes are provided, and the
network is loaded into the OpenCV DNN module. The DNN module utilizes the pre-trained deep
neural network model to calculate the output layers for object detection tasks. By forwarding
an input image through the network, the output layers generate predictions that describe the
locations of objects, along with their class probabilities.

The model identifies dogs by returning bounding boxes around the detected dogs, labeling them
as "dog," and assigning confidence scores. An example of a detected dog at the edge node is
depicted in the figure provided, with the class label "dog" and a confidence level of 72%.

For the implementation of object detection, you can refer to the codebase available at the
following GitHub repository: https://github.com/shahinator/YOLOv5-Dog-Cat-Detection

https://github.com/shahinator/YOLOv5-Dog-Cat-Detection

Upload Frame to Minio:

Figure 6: Dog Edge Frame Upload to MinIO

The process of detecting a dog using the object detection script involves uploading the resulting
image to a MinIO server hosted in a K3s cluster. The figure provided illustrates the end-to-end
process, starting from the camera capturing the image, detecting the rat, and finally uploading
the image to the MinIO server.

To facilitate the upload, a MinIO client object is created, representing the MinIO server hosted
in the K3s cluster. The MinIO client object is configured with the MinIO server's endpoint, access
key, secret key, and security level. In order to store the image in the MinIO server, buckets need
to be created. The MinIO client can be used to create the required bucket, and the image can
be uploaded using the put object method.

The picture displayed demonstrates the rat-detected frame from the edge node, which has been
successfully uploaded to the MinIO server hosted in the K3s cluster.

Web Application Development:

Figure 7: Upload Dog Image Frame to MinIO

To showcase the dog images captured through the camera and stored in the MinIO database, a
web application has been developed using a React JS framework. React JS is a lightweight web
framework in JavaScript that offers convenient tools and features, simplifying the process of
building web applications.

By leveraging React, a user interface has been constructed, allowing users to interact with the
application. The React application serves as a platform to display the dog images retrieved from
the MinIO database, providing a seamless and user-friendly experience.

Figure 8: Frontend View

5. Summary

The implementation of object detection using a K3s cluster cloud infrastructure on Raspberry Pi
offers several advantages compared to traditional on-premise solutions. Cloud infrastructure
allows for scalability, improved performance, faster object detection, and easy accessibility. The
utilization of a K3s cluster facilitates efficient deployment and management of containerized
object detection applications, while also enabling seamless integration with cloud services like
storage and databases. However, there are challenges associated with implementing object
detection in cloud infrastructure, including containerization, expertise in cloud infrastructure
and object detection, and the need to address data privacy, security, and regulatory compliance
concerns. Despite these challenges, the combination of these technologies provides a flexible
and powerful solution for object detection that can be applied across various use cases.

6. Challenges
While implementing dog detection on Raspberry Pi with edge and cloud infrastructure, several
challenges and learning experiences were encountered:

1. Edge Node Configuration: Configuration issues arose when accessing the camera's live
feed with OpenCV on the Edge node. To resolve this issue, a complete reinstallation of
OpenCV was required, as the error messages were not clear.

2. Performance of YOLO V4 Model: The Raspberry Pi 4's limited processing power posed
performance issues when using the full YOLO V4 object detection model. Although using
the YOLO V4 tiny model improved performance, it significantly reduced accuracy. To
overcome this, multithreading was implemented to enhance the efficiency of the YOLO
V4 model.

3. Infrastructure Configuration and Sharing: Sharing the infrastructure led to disarray in
configurations, especially with pre-existing static IP addresses. As a result, there were
instances where the infrastructure had to be set up from scratch. The risk of wear and
tear during the exchange of devices or components also affected usability.

4. Resource Constraints: The effective utilization of the Raspberry Pi devices posed a
learning curve due to their resource-constrained nature. Optimizing the code and
managing resources efficiently became crucial for successful implementation.

5. Limitations of MinIO in Multi-Node Multi-Drive Mode: It was discovered that utilizing
MinIO in Multi-Node Multi-Drive mode was not feasible due to the resource capacity
required for synchronization processes.

6. DHCP Server Configuration: Configuring the infrastructure using a DHCP server proved to
be a time-consuming process. Ultimately, a Fritz-Box was used to overcome this
challenge.

These challenges and learnings contributed to a better undFritz Boxer standing of the limitations
and considerations involved in implementing dog detection on Raspberry Pi with edge and cloud
infrastructure.

7. References

[1] Raspberry Pi 4 Model B. Retrieved from:

 https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

[2] Raspberry Pi Camera Module V2. Retrieved from:

 https://www.raspberrypi.com/products/camera-module-v2/

[3] AlexeyAB/darknet GitHub Repository. Retrieved from:

 https://github.com/AlexeyAB/darknet/

[4] Object Detection with OpenCV GitHub Repository. Retrieved from:

https://github.com/arunponnusamy/object-detection-opencv

[5] OpenCV Linux Installation Tutorial. Retrieved from:

https://docs.opencv.org/4.x/d7/d9f/tutorial_linux_install.html

[6] Uploading Files in MinIO Using Python. Retrieved from:

 https://medium.com/featurepreneur/upload-files-in-minio-using-python-4f987f902076

[7] MinIO Linux Installation Documentation. Retrieved from:
https://min.io/docs/minio/linux/operations/installation.html

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/camera-module-v2/
https://github.com/AlexeyAB/darknet/
https://github.com/arunponnusamy/object-detection-opencv
https://github.com/arunponnusamy/object-detection-opencv
https://docs.opencv.org/4.x/d7/d9f/tutorial_linux_install.html
https://docs.opencv.org/4.x/d7/d9f/tutorial_linux_install.html
https://medium.com/featurepreneur/upload-files-in-minio-using-python-4f987f902076
https://min.io/docs/minio/linux/operations/installation.html

