

Assembling Cloud Infrastructures with Eucalyptus

Cloud Expo Europe 2009 (London)

Christian Baun

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

KIT – The cooperation of Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

http://www.kit.edu

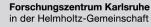
Agenda

- Clouds vs. Grids
- Popular Cloud/Grid Infrastructures
- Types of Cloud Services
- The OpenCirrus[™] project
- Eucalyptus
- AppScale

Definitions (Cloud / Grid)

Cloud Computing is on-demand access to virtualized IT resources that are sourced inside or outside of a data center, scalable, shared by others, simple to use, paid for via subscription or as you go and accessible over the web.

Dr. Behrend Freese (Zimory GmbH)


A computing Cloud is a set of network enabled on demand IT services, scalable and QoS guaranteed, which could be accessed in a simple and pervasive way.
Dr. Marcel Kurze (SCC/KIT)

Dr. Marcel Kunze (SCC/KIT)

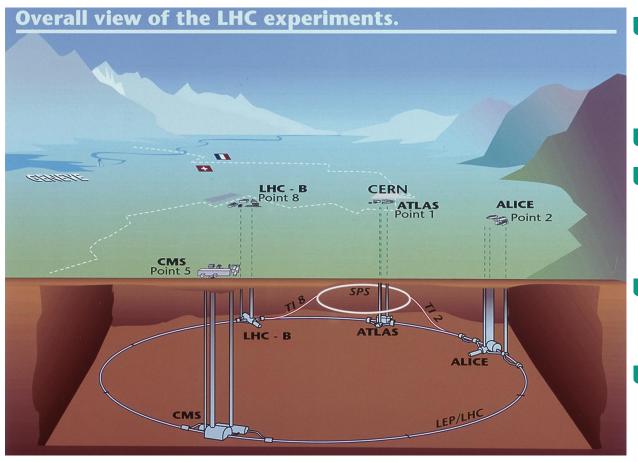
Grid computing is coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations. Ian Foster (Argonne National Laboratory)

A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities.

Ian Foster & Carl Kesselman

Clouds vs. Grids: A Comparison

	Cloud Computing	Grid Computing		
Objective	Provide desired computing platform via network enabled services	Resource sharing Job execution		
Infrastructure	One or few data centers, heterogeneous/homogeneous resource under central control	Geographically distributed, heterogeneous resource, no central control, VO		
	Industry and Business	Research and academic organization		
Application	Suited for generic applications	Special application domains like High Energy Physics		
Business Model	Commercial: Pay-as-you-go	Publicly funded: Use for free (negotiate with resource owner for resource access)		
Middleware	Proprietary, several reference implementations exist (e.g. Amazon)	Well developed, maintained and documented		
User interface	Easy to use/deploy, no complex user	Difficult use and deployment		
	interface required	Need new user interface, e.g., commands, APIs, SDKs, services		
Operational Model	Industrialization of IT	Mostly Manufacture Handcrafted Services		
	Fully automated Services			
QoS	Possible	Little support		
On-demand provisioning	Yes	No		


4 | Christian Baun | Cloud Expo Europe 2009 (London) | May 21th 2009

THE Grid-Project: LHC Computing Grid (1)

http://lcg.web.cern.ch/LCG/

Source: http://guillegg.wordpress.com

- The LHC is the worlds largest and highest-energy particle accelerator
- 4 main detectors
- Located at CERN. The European Organization for Nuclear Research
- Used to test various predictions of highenergy physics
- Big goal: confirm or refute the existence of Higgs boson ("God particle")

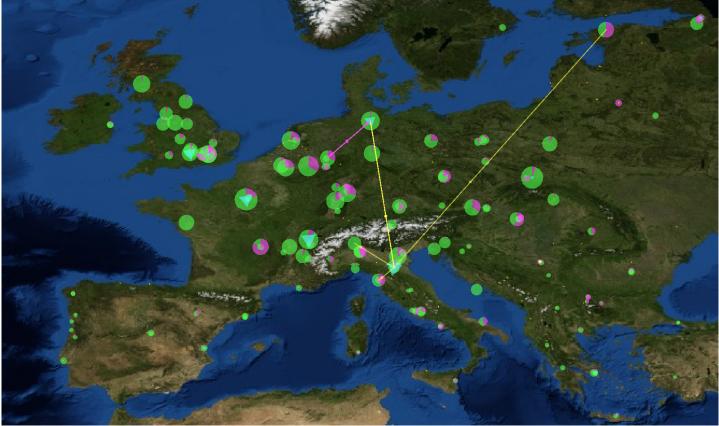
THE Grid-Project: LHC Computing Grid (2)

http://lcg.web.cern.ch/LCG/

The LHC generates 10 - 40 Petabyte of data for all experiments per year

Data is stored and analyzed distributed inside the LHC-Grid

- Largest computing grid in the world
- > 150 Sites
- > 20000 Servers


Source: http://www.nssp.uni-saarland.de

EGEE: 60000+ CPUs with Linux

http://gridportal.hep.ph.ic.ac.uk/rtm/

The Real Time Monitor shows:

- running and scheduled jobs
- job transfers
- detailed information on Resource Brokers and Computing Elements for each site

7 | Christian Baun | Cloud Expo Europe 2009 (London) | May 21th 2009

Three Major Types of Cloud Services

\wedge -	
	SaaS Google Apps Gmail Oracle SaaS Platform (Software as a Service) Salesforce.com Gliffy
	PaaS Google App Engine Amazon Simple DB Microsoft Azure (Platform as a Service) Microsoft SQL Data Services Mosso Rails One
	JaaS3teraAmazon EC2HP Flexible Computing Services(Infrastructure as a Service)EucalyptusJoyentSun network.com
	Hardware
Higher L evel Services	

SaaS:

Provides enterprise quality software (complete applications)

PaaS:

- Appears as one single large computer and makes it simple to scale from a single server to many
- No need to worry about the operating system or other foundational software

laaS:

Abstracts away the hardware (servers, network,...) and allows to run virtual instances of servers without ever touching a piece of the hardware

OpenCirrus™ In the Press

HP, Intel, Yahoo Join Government, Academia In Cloud Computing Research

Each of the founding members will host a cloud-computing infrastructure largely based on HP computers and Intel processors in six data centers.

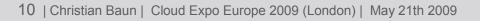
By Antone Gonsalves, <u>InformationWeek</u> July 29, 2008 URL: <u>http://www.informationweek.com/story/showArticle.jhtml?articleID=209800449</u>

Hewlett-Packard, Intel, and Yahoo on Tuesday said they have joined government and academia in launching a global, multi-data center test bed for experimentation and research in cloud computing, which many experts believe will be the dominant IT delivery model of the future.

The <u>initiative aims at building a computing network</u> comprised of six data centers spanning three continents. The idea is to have a large-scale <u>platform</u> for testing all technology -- hardware and <u>software</u> -- related to delivering application services over the Internet.

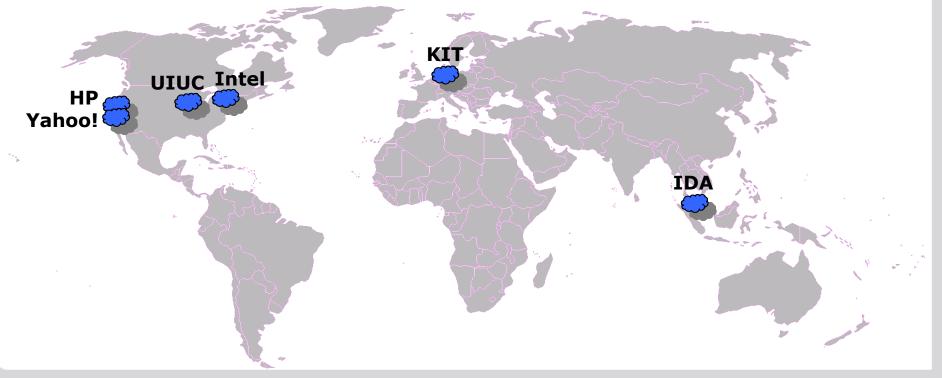
"This is a global collaboration that spans the industry, spans academia and government," Prith Banerjee, senior VP for research at HP, told reporters during a teleconference held by the three founding companies.

The other founders of the effort include the Infocomm Development Authority of Singapore, the University of Illinois at Urbana-Champaign, and the Karlsruhe Institute of Technology in Germany. The partnership with the University of Illinois also includes the National Science Foundation.


Each of the founding members will host a cloud-computing infrastructure largely based on HP computers and Intel processors. The <u>infrastructure</u> will include from 1,000 to 4,000 <u>processor</u> cores capable of supporting data-intensive research. The six facilities are up and running today in "bits and pieces" and are expected to be fully operational this year and accessible to researchers worldwide through a selection process.

OpenCirrus[™] Cloud Computing Research Testbed

- An open, internet-scale global testbed for cloud computing research
 - Data center management & cloud services
 - Systems level research
 - Application level research
- Structure: a loose federation
 - Sponsors: HP Labs, Intel Research, Yahoo!
 - Partners: University of Illinois at Urbana-Champaign (UIUC), Singapore Infocomm Development Authority (IDA), KIT
- Great opportunity for cloud R&D
- http://opencirrus.org

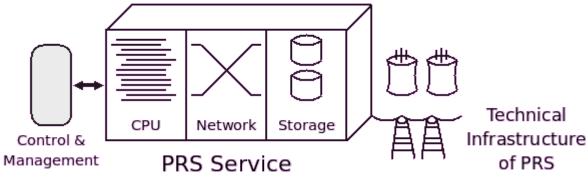


Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Where are the OpenCirrus[™] sites?

- Six sites initially:
 - Sites distributed world-wide: HP Research, Yahoo!, UIUC, Intel Research Pittsburgh, KIT, Singapore IDA
 - 1000 4000 processor cores per site
- KIT-Site available in Summer 2009
 - **3300** Nehalem cores, 10TB memory, 192TB hard disk storage

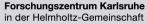
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



Universität Karlsruhe (TH)

Forschungsuniversität • gegründet 1825

OpenCirrus[™] - Physical Resource Sets (PRS)

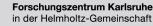

PRS service goals

- Provide mini-datacenters to the researchers
- Isolate experiments from each other

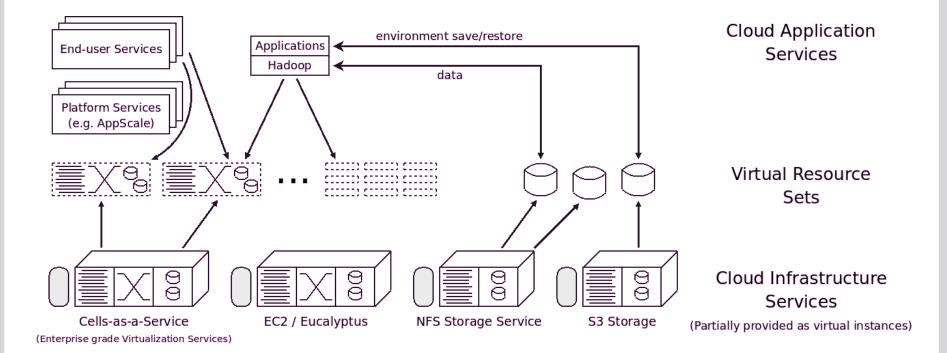
PRS service approach

- Allocate sets of physical co-located nodes, isolated inside VLANs using existing software
 - Utah Emulab Network Emulation Testbed
 - HP Opsware Server provisioning, configuration and management
- ...
 Start simple, add features as we go
- Basis to implement Virtual Resource Sets (VRS)

Hardware as a Service (HaaS)



OpenCirrus[™] - Virtual Resource Sets (VRS)


- Basic idea: Abstract from physical resources by the introduction of a virtualization layer
- Concept applies to all IT aspects: CPU, storage, networks and applications, ...
- Main advantages
 - Implement IT services exactly fitting customers varying needs
 - Deploy IT services on demand
 - Automated resource management
 - Easily guarantee service levels
 - Live migration of services
 - Reduce both: Capital Expenditures and Operational Expenditures
- Infrastructure as a Service (laaS)
 - Implement Compute and Storage Services
 - De-facto standard: Amazon Web Services interface

OpenCirrus™ Blueprint

Control & PRS Service Of PRS

Commercial Cloud Offerings (Small Excerpt)

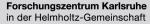
Problem: Commercial offers are proprietary and usually not open for Cloud systems research and development!

15 | Christian Baun | Cloud Expo Europe 2009 (London) | May 21th 2009

b-hive

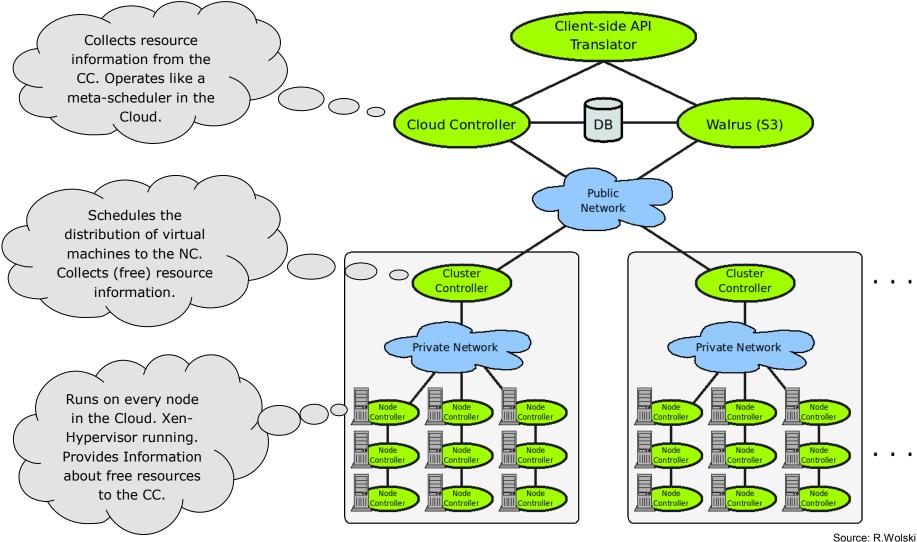
Joyent

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

- Open-Source software infrastructure for implementing Cloud computing on clusters from UC Santa Barbara
- EUCALYPTUS Elastic Utility Computing Architecture for Linking Your Programs To Useful Systems
- Implements Infrastructure as a Service (laaS) gives the user the ability to run and control entire virtual machine instances (Xen, KVM) deployed across a variety of physical resources
- Interface compatible with Amazon EC2
- Includes Walrus, a storage service that is interface compatible with Amazons S3
- Potential to interact with the same tools, known to work with Amazon EC2, S3 and EBS
- Eucalyptus is an important step to establish an open Cloud computing infrastructure standard



Amazon EC2 and S3 Interface

17 | Christian Baun | Cloud Expo Europe 2009 (London) | May 21th 2009

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Comparing Storage Performance between S3 and Eucalyptus

Storage Performance IBM Blade LS20 (36.7GB, 2,5", U320, 10K) IBM Blade HS21 (146GB, 2,5", SAS, 10K) Amazon EC2 US-East Amazon EC2 EU-West WOW!? 0

Sequential Output

800000

700000

600000

500000

400000

300000

200000

100000

0

[KB/s]

Per-Character: file is written using putc()

putchar

putblock

rewrite

Sequential Output/Input

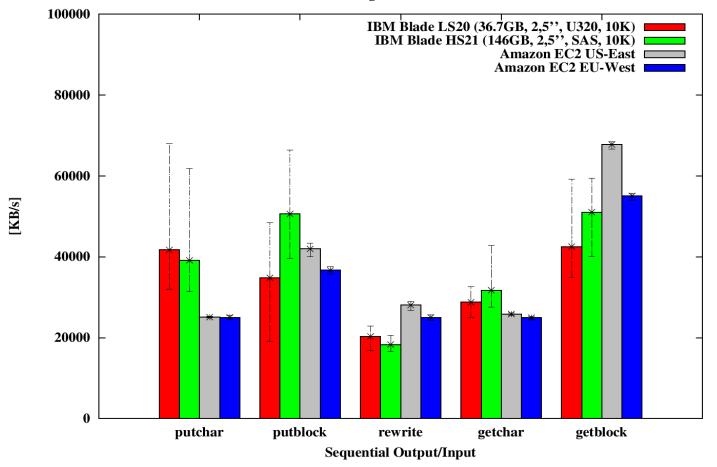
- Block: file is written using write()
- Rewrite: read() and write()

18 | Christian Baun | Cloud Expo Europe 2009 (London) | May 21th 2009

getblock

getchar

Sequential Input


Per-Character: file is read using getc()

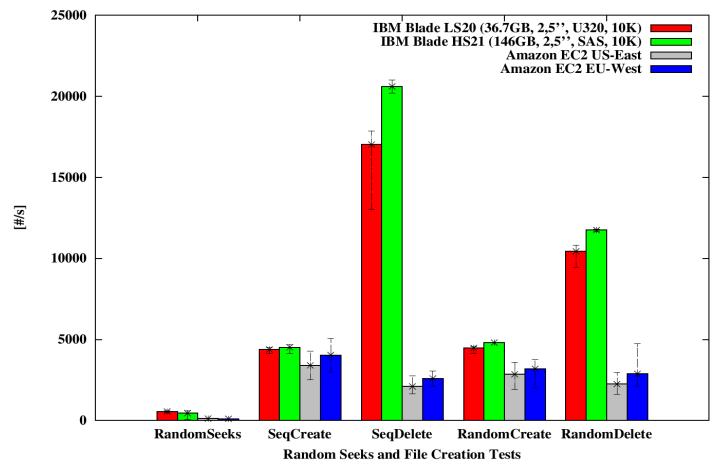
Blockwise: file is written using read()

Realistic values...

Storage Performance

The RAM of the Eucalyptus Node Controller was reduced to overcome memory caching

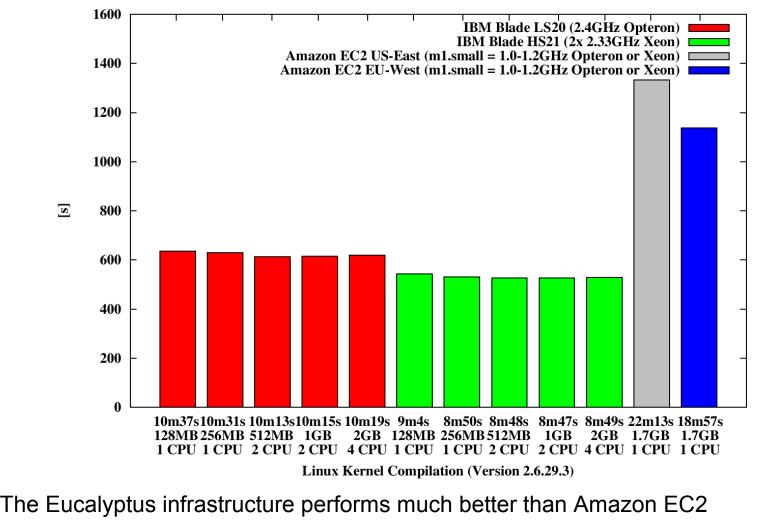
The storage performance of Eucalyptus depends on the available storage sub-system


Write performance of Eucalyptus is faster. Because of the close distance?!

Performance of Random Seeks and File Creation

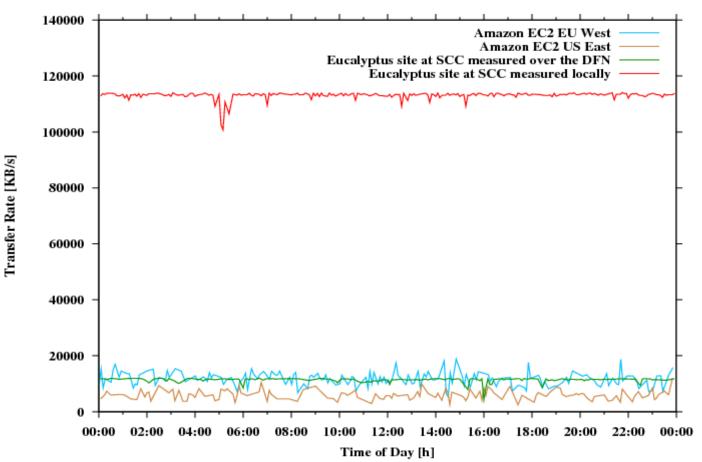
File Performance

Random seeks and file creation with Eucalyptus is faster


Because of the close distance?!

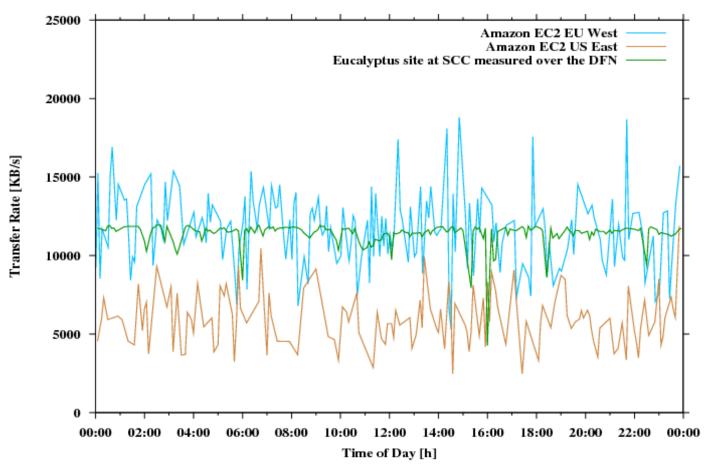
CPU Performance

CPU Performance


More RAM and CPU power is not leading to a massive performance boost

Network Transfer Rate

Network Transfer Rate

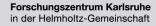

The network transfer rate to the Eucalyptus infrastructure is more constant in contrast to Amazon EC2

Network Transfer Rate (More in Detail)

Network Transfer Rate

The network transfer rate to the Eucalyptus infrastructure is more constant in contrast to Amazon EC2

Install Eucalyptus



Installation is quite easy when using binary packackes for CentOS, openSUSE, Debian and Ubuntu http://open.eucalyptus.com/wiki/EucalyptusAdministratorGuide_v1.5

Possible to build from sources

http://open.eucalyptus.com/wiki/EucalyptusSourceCodeInstallation_v1.5

- Requirement: ≥ 1 Linux machines with working Xen Hypervisor or Kernel-based Virtual Machine (KVM)
 - For using KVM a modern CPU with AMD-V (Pacifica) or Intel VT (Vanderpool) is needed
- Amazon EC2 Command-Line Tools
 - ec2-api-tools-1.3-30349
 - ec2-ami-tools-1.3-26357

Use Eucalyptus

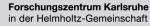
Shows the cluster's front-end hostname, free resources, available NCs:

ec2-describe-availability-zones verbose

AVAILABILITYZONE	Cluster1 iwrcgblade1	L1			
AVAILABILITYZONE	- vm types free	/ max	cpu	ram	disk
AVAILABILITYZONE	- m1.small 0020	/ 0024	1	128	10
AVAILABILITYZONE	- c1.medium 0020	/ 0024	1	256	10
AVAILABILITYZONE	- m1.large 0008	/ 0012	2	512	10
AVAILABILITYZONE	- ml.xlarge 0008	/ 0012	2	1024	20
AVAILABILITYZONE	- c1.xlarge 0002	/ 0006	4	2048	20
AVAILABILITYZONE	- iwrcgblade11 cer	ts[cc=fa	lse,nc	=false]	
	@ Thu May 14 22:1	L6:23 CES	ST 2009		
AVAILABILITYZONE	- iwrcgblade12 cer	ts[cc=fa	lse,nc	=false]	
	@ Thu May 14 22:1	L6:23 CES	ST 2009		
AVAILABILITYZONE	- iwrcgblade13 cer	ts[cc=fa	lse,nc	=false]	
	@ Thu May 14 22:1	L6:23 CES	ST 2009		
AVAILABILITYZONE	- iwrcgblade30 cer	ts[cc=fa	lse,nc	=false]	
	@ Thu May 14 22:1	L6:23 CES	ST 2009		

Register Images

Register a Filesystem-Image:


ec2-bundle-image -i debian5.img
ec2-upload-bundle -b image-debian5 -m /tmp/debian5.img.manifest.xml
ec2-register image-debian5/debian5.img.manifest.xml

Register a Kernel-Image:

ec2-bundle-image -i /boot/vmlinuz-2.6.26 --kernel true
ec2-upload-bundle -b kernel26 -m /tmp/vmlinuz-2.6.26.manifest.xml
ec2-register kernel26/vmlinuz-2.6.26.manifest.xml

Register a Ramdisk-Image:

ec2-bundle-image -i /boot/initrd.img-2.6.26 --ramdisk true
ec2-upload-bundle -b ramdisk26 -m /tmp/initrd.img-2.6.26.manifest.xml
ec2-register ramdisk26/initrd.img-2.6.26.manifest.xml

Control Registered Images

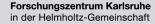
Registered images gets an unique identifier

- Eucalyptus Machine Image: emi-xxxxxxxx
- Eucalyptus Kernel Image: eki-xxxxxxxx
- Eucalyptus Ramdisk Image: eri-xxxxxxx

Get information about registered images:

ec2-describe-images emi-1DE4116D debian5/debian5.img.manifest.xml IMAGE admin available public x86 64 machine kernel26/vmlinuz-2.6.26.manifest.xml IMAGE eki-791612FF admin available public kernel x86 64 eri-CFBE1450 ramdisk26/initrd.img-2.6.26.manifest.xml IMAGE admin available ramdisk public x86 64

Run Instances

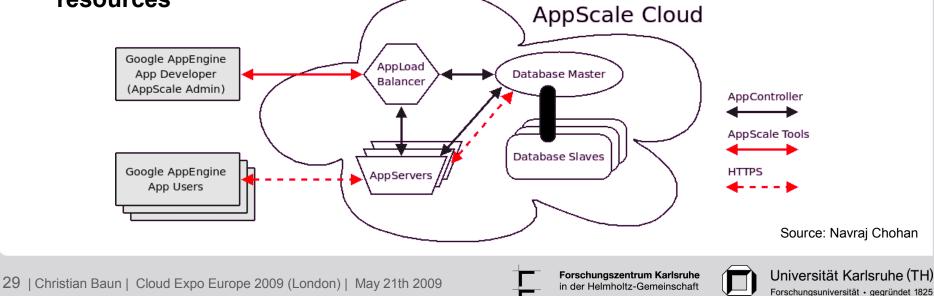

Run instances:

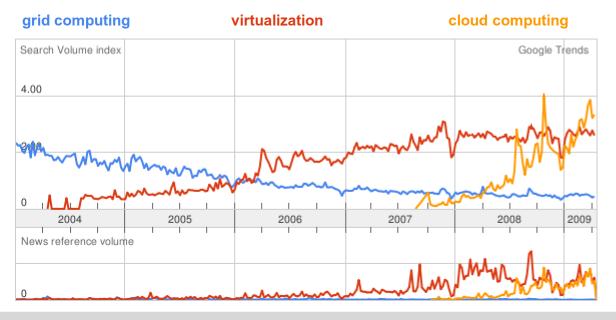
Check instances:

ec2-describe-instances admin default RESERVATION r - 3DDE07D9INSTANCE i-4901084F emi-1DE4116D 0.0.0.0 141.52.166.160 running0m1.small 2009-05-13T13:50:37+0000 eki-791612FF eri-CFBE1450 r - 42FA0732admin default RESERVATION emi-1DE4116D i-463B08BE 0.0.0.0 141.52.166.161 INSTANCE running0m1.small 2009-05-13T13:50:10+0000 eki-791612FF eri-CFBE1450

Terminate instances:

ec2-terminate-instances i-4901084F i-463B08BE




- Open-source implementation of the Google AppEngine Cloud computing interface from UC Santa Barbara
- AppEngine allows to run web applications in the Google infrastructure
- AppScale executes automatically and transparently over Cloud infrastructures such as Eucalyptus, the open-source implementation of the Amazon Web Services interfaces
- AppScale provides a Platform-as-a-Service (PaaS) Cloud infrastructure that allows users to deploy, test, debug, measure, and monitor Google AppEngine applications prior to deployment on Google's proprietary resources

Summary

- Cloud computing is the next big thing
 - Flexible and elastic resource provisioning
 - Economy of scale makes it attractive
 - Move from manufacture towards industrialization of IT
 - (Everything as a Service)
- OpenCirrus[™] offers interesting R&D opportunities
 - Cloud systems and application development
 - Accepting research proposals soon

Thank you for your attention

31 | Christian Baun | Cloud Expo Europe 2009 (London) | May 21th 2009

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825