

Sustainability in Grid-Computing Christian Baun

Die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Sustainability in Grid-Computing

Important topics in Grid-Computing during GridKa-School 2007:

- Grid applications
- Grid middleware systems
- Grid business models
- Usability
- Involvement of industry

□ ...

All these topics play an important role while archiving sustainability!

The D-Grid Project

- The aim of D-Grid is to build and run a reliable and <u>sustainable</u> Grid Infrastructure for e-Science in Germany
- 19 Community projects
 - Different scientific fields
 - Variety in manpower and financial possibilities
- 1 Integration project
 - Builds up the infrastructure
 - Integrates the developments from the different community projects in one common D-Grid platform
- Design parameters:
 - □ D-Grid 1: 2005 2008
 - □ D-Grid 2: 2007 2010
 - □ 24 Sites
 - □ Funding: 60 M€

4 | Christian Baun | Steinbuch Centre for Computing | 14.9.2007

Why do we need Sustainability? - Motivation (1)

• Typical progression in a scientific project:

→ Not sustainable!

KIT - Die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

5 | Christian Baun | Steinbuch Centre for Computing | 14.9.2007

Why do we need Sustainability? - Motivation (2)

• Our goal:

Start of the project

Duration of the project

Long-time availability of

- infrastructure and
 - services

➔ sustainable!

Why do we need Sustainability? - Motivation (3)

Examples for sustainable infrastructures

The sustainability of an infrastructure with scientific purposes depends on how it becomes a normal element of the scientific process!

A Grid Infrastructures can be seen as a Stock Market

User of services

KIT - Die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

7 | Christian Baun | Steinbuch Centre for Computing | 14.9.2007

Properties of Sustainability in Grid-Computing (1)

- Long-term availability of infrastructure and services
 - □ Users (scientists) need long-term available tools for their work
 - Industry demands for long-term available standards (markets)
- An surplus value for all participants exists
 - Surplus value does not only mean financial profit (renting resources)
 - Surplus value means also new knowledge is gained and scientific collaborations are enhanced
 - Surplus value means the daily work of users (scientists) get easier and more effective
- Long-term cost-covering operation with permanent reinvestments in the infrastructure
 - □ Existence of a realistic business plan
 - Long-term and secure financing from more than one source

Legal Security

- Analysis of legal Framework needs to be done
- Nobody wants to violate law and get sued

Collaborations with similar objectives

- No need for silo projects
- Pushing the integration in international projects

Helping the users with their daily work

- Users (scientists) need good tools and infrastructures
- Advancement of the research location

Roles and their Needs

und Universität Karlsruhe (TH)

for Computing

To achieve sustainability we need to identify the stakeholders involved and their needs and find ways to satisfy them:

10 | Christian Baun | Steinbuch Centre for Computing | 14.9.2007

Privacy (1)

- Most European nations:
 - Privacy is considered highly important
- USA, Japan and other important developed countries:
 Privacy as something less important
- International collaborations in Grid computing increase
- Distributed IT-infrastructures are getting more complex
- Difficult to guarantee privacy

Privacy (2)

Example: Personal data collected for statistical purpose should be processed in a Grid

- Mostly incalculable how many nodes are storing that data
- Difficult to say where the nodes are exactly located
- Grid service providers have to guarantee that personal data, distributed over the Grid, are never duplicated on the nodes
- Problem: Data on nodes are typically stored in backups
- Grid service providers have to make sure that all personal data is non-recoverably erased from the nodes after processing
- The users have the right to revoke their permission for collection and processing their personal data any time
 - Grid service providers need to have the capabilities to erase personal data of single users from the Grid resources at any time

Privacy (3)

- Sometimes personal data needs to be transferred to resources in other countries without equal or stronger privacy laws
 - Difficult agreements between resource providers and Grid service providers are required
 - See safe harbor acknowledgement between the European Union and USA
 - Such a proceeding is very complex and in a huge and dynamic Grid infrastructure neither realistic nor feasible

Privacy: Solutions (1)

Making the personal data anonymous

- Modifying the data it in a way that assigning it to allocatable persons is impossible or requires an extraordinary amount of time, cost and manpower
- Nearly impossible to restore the original data
- No more problems with privacy
- But: The quintessence of the data is lost

Example:

- Martin Müller (Mannheim) \rightarrow Mr. B from Y
- Helmut Haffner (Heidelberg) \rightarrow Mr. C from Z

Privacy: Solutions (2)

Altering the personal data

- Data can only be assigned to allocatable persons with a code or a cryptographic method
- □ After altering the data with a key or hash it is easy for the user to restore the personal data
- □ If encryption is strong, no more problems with privacy
- Problems: Altering the personal data is not always possible or useful

Example:

- Heike Hansen (Hamburg) Ifjlf Ibotfo from Ibncvsh
- Martin Müller (Mannheim) \rightarrow
- Helmut Haffner (Heidelberg)
- - Nbsujo Nvmmfs from Nbooifjn
 - Ifmnvu Ibggofs Ifjefmcfsh \rightarrow

Privacy: Solutions (3)

- Levels of privacy and security of resources and their environment
 - Periodically rating by transparent and standardized audits
 - Logging any access to user data
 - Disqualification:
 - Cannot guarantee privacy
 - Produces significant overhead

Example:

Privacy: Solutions (4)

- Privacy and the Grid:
 - No satisfactory solutions existing
 - Working solutions get more and more important with growing participation of industry in grid projects
 - □ Still much work to do
- In the contract between Grid service providers and resource providers it has to be made clear:
 - □ What kind of measures the parties are taking to ensure privacy
 - Who is to blame if personal data is getting stolen

Legal Topics: Much Work to do

Legal topics of Grid-Computing

- Currently not well-investigated
- No court decisions exist
- Many aspects of Grid-Computing are not new
- Huge similarities with outsourcing of business processes and with web hosting offers of Internet service providers or Internet web hosting providers
- Problems arise in international projects
 - Who is to blame if a poor programmed grid-job causes a defect
 - Different legal systems have to be considered

What are the Costs for the Infrastructure?

- The biggest part of the total costs are personnel costs
 - Personnel is needed for running and improving infrastructure, user support and possibly software engineering
 - In Germany the employer of a scientist needs to budget € 80.000 through € 100.000 per employee per year
 - (Includes: salary, insurances, equipment, fees for training courses, ...)
- Hardware for running an core-grid-installation for testing new software versions
 - □ The hardware needs to be **reinvested** every 3 years

What are the Costs for the Infrastructure?

Additional costs

- Costs for electrical power and cooling
 - With water cooling: approximately € 4 per watt per year
 - With air cooling: approximately € 5 per watt per year
- Additional costs per server
 - Rack and storing position
 - Administration and batch licenses
- Helpdesk-Tool (Trouble Ticket System)
 - □ Open Source Tools: OneOrZero, XOOPS, Request Tracker, ...
 - □ Proprietary Tools: Remedy, ...
 - Purchase costs depend on product and number of users
 - Support contract: approximately 15% of purchase costs per year

Marketing: flyer, poster, conference fees, hosting workshops, …

Software Licenses (1)

- Fear of complications because of incompatible software licenses in the beginning of D-Grid
- Questions asked:
 - Is it possible to mix software under different Open Source software licenses and proprietary software licenses?
 - Is it allowed to collect all needed Grid software und distribute it on one CD?
 - What software licenses give us the benefits of Open Source and leave the door open for industry?
 - What Open Source software license is suited best for developing Grid applications?
- The most popular Open Source software licenses were investigated for their appropriateness in Grid environments
 - GPL, LGPL, Apache License 2.0, Mozilla Public License, Q Public License, ...
 - Result: Apache License 2.0 is best suited

Software Licenses (2)

- Apache License 2.0:
 - Related to the BSD license
 - Non-viral: derived software is not required to be redistributed as Open Source
 - Software linked to software under the terms of the BSD or Apache License
 2.0 does not need to have the same software license
 - □ Securing the project sovereignty while protecting the project name
 - Short and easy to understand
- Most common Grid software uses the Apache License 2.0 or another BSD style license:
 - Unicore: BSD license
 - □ **Globus Toolkit** \ge 4.0.1: Apache License 2.0
 - **gLite**: EGEE Software License. Switch to Apache License 2.0 is planned
 - GridSphere: Apache License 2.0
 - □ Shibboleth: Apache License 2.0
 - □ **VOMS**: EU DataGrid Software License (EDG). BSD style license
 - □ **iRODS**: BSD style license

Next Steps for D-Grid

- Actually D-Grid develops a business model
- A German Grid support facility will be installed. Its tasks are:
 - □ Running the core services (Monitoring, Security, Billing, …)
 - □ Support for users and resource providers (Helpdesk, Phone)
 - Consulting of developers and resource providers
 - Consulting of resource providers in legal topics
- Costs of German Grid support facility depend on the services and number of customers
 - Major part of costs are personnel costs
 - Also environmental costs and costs for running a core-gridinstallation
- The customers (users and resource providers) have to pay for the services they consume and will finance the German Grid support facility

Thank you for your attention!

KIT - Die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

24 | Christian Baun | Steinbuch Centre for Computing | 14.9.2007