Sustainability in Grid-Computing
Christian Baun
Sustainability in Grid-Computing

- Important topics in Grid-Computing during GridKa-School 2007:
 - Grid applications
 - Grid middleware systems
 - Grid business models
 - Usability
 - Involvement of industry
 - ...

- All these topics play an important role while archiving sustainability!
The D-Grid Project

- The aim of D-Grid is to build and run a reliable and sustainable Grid Infrastructure for e-Science in Germany

- 19 Community projects
 - Different scientific fields
 - Variety in manpower and financial possibilities

- 1 Integration project
 - Builds up the infrastructure
 - Integrates the developments from the different community projects in one common D-Grid platform

- Design parameters:
 - D-Grid 2: 2007 – 2010
 - 24 Sites
 - Funding: 60 M€
Why do we need Sustainability? – Motivation (1)

- Typical progression in a scientific project:

 ![Diagram]

 Start of the project → Duration of the project → End of the project (out of money) → bye bye

→ Not sustainable!
Why do we need Sustainability? – Motivation (2)

- Our goal:

 ![Diagram](image)

 - Start of the project
 - Duration of the project
 - Long-time availability of
 - infrastructure and
 - services

⇒ sustainable!
Why do we need Sustainability? – Motivation (3)

- Examples for sustainable infrastructures

- The sustainability of an infrastructure with scientific purposes depends on how it becomes a normal element of the scientific process!
A Grid Infrastructures can be seen as a Stock Market

Grid infrastructure

User of services

Resource provider
Properties of Sustainability in Grid-Computing (1)

- Long-term availability of infrastructure and services
 - Users (scientists) need long-term available tools for their work
 - Industry demands for long-term available standards (markets)

- An surplus value for all participants exists
 - Surplus value does not only mean financial profit (renting resources)
 - Surplus value means also new knowledge is gained and scientific collaborations are enhanced
 - Surplus value means the daily work of users (scientists) get easier and more effective

- Long-term cost-covering operation with permanent re-investments in the infrastructure
 - Existence of a realistic business plan
 - Long-term and secure financing from more than one source
Properties of Sustainability in Grid-Computing (2)

- Legal Security
 - Analysis of legal Framework needs to be done
 - Nobody wants to violate law and get sued
- Collaborations with similar objectives
 - No need for silo projects
 - Pushing the integration in international projects
- Helping the users with their daily work
 - Users (scientists) need good tools and infrastructures
 - Advancement of the research location
Roles and their Needs

To achieve sustainability we need to identify the stakeholders involved and their needs and find ways to satisfy them:

- Billing
- Accounting
- Regulatory framework
- Security
- Privacy
- Protection of intellectual property
- Possibility to calculate the load
- Long-term surplus value
- Interdisciplinary orientation
- Open standards
- Long-term availability of infrastructure
- Reliability of services offered
- Usability
- Funding agency (BMBF)
- Resource provider/Research computing center
- User (scientist)/Virtual organisation

Sustainability

Funding agency (BMBF)

Resource provider/Research computing center

User (scientist)/Virtual organisation

Industry

Interdisciplinary orientation

Open standards

Long-term availability of infrastructure

Reliability of services offered

Usability

Protection of intellectual property

Security

Privacy

Regulatory framework

Billing

Accounting
Privacy (1)

- Most European nations:
 - Privacy is considered highly important
- USA, Japan and other important developed countries:
 - Privacy as something less important
- International collaborations in Grid computing increase
- Distributed IT-infrastructures are getting more complex
- Difficult to guarantee privacy
Privacy (2)

- Example: Personal data collected for statistical purpose should be processed in a Grid
 - Mostly incalculable how many nodes are storing that data
 - Difficult to say where the nodes are exactly located
 - Grid service providers have to guarantee that personal data, distributed over the Grid, are never duplicated on the nodes
 - Problem: Data on nodes are typically stored in backups

- Grid service providers have to make sure that all personal data is non-recoverably erased from the nodes after processing

- The users have the right to revoke their permission for collection and processing their personal data any time
 - Grid service providers need to have the capabilities to erase personal data of single users from the Grid resources at any time
Privacy (3)

- Sometimes personal data needs to be transferred to resources in other countries without equal or stronger privacy laws
 - Difficult agreements between resource providers and Grid service providers are required
 - See safe harbor acknowledgement between the European Union and USA
 - Such a proceeding is very complex and in a huge and dynamic Grid infrastructure neither realistic nor feasible
Privacy: Solutions (1)

- Making the personal data anonymous
 - Modifying the data in a way that assigning it to allocatable persons is impossible or requires an extraordinary amount of time, cost and manpower
 - Nearly impossible to restore the original data
 - No more problems with privacy
 - But: The **quintessence** of the data is **lost**

Example:

Heike Hansen (Hamburg) → Mrs. A from X
Martin Müller (Mannheim) → Mr. B from Y
Helmut Haffner (Heidelberg) → Mr. C from Z
Privacy: Solutions (2)

- Altering the personal data
 - Data can only be assigned to allocatable persons with a code or a cryptographic method
 - After altering the data with a key or hash it is easy for the user to restore the personal data
 - If encryption is strong, no more problems with privacy
 - Problems: Altering the personal data is **not always possible** or useful

Example:

- Heike Hansen (Hamburg) → Ifjlf Ibotfo from lbnvcvsh
- Martin Müller (Mannheim) → Nbsujo Nvmmfs from Nbooifjn
- Helmut Haffner (Heidelberg) → Ifmvnu Ibggofs Ifjefmcfsh
Privacy: Solutions (3)

- Levels of privacy and security of resources and their environment
 - Periodically rating by transparent and standardized audits
 - Logging any access to user data
 - Disqualification:
 - Cannot guarantee privacy
 - Produces significant overhead

Example:

I am a SE in Austria!
- Free capacity: 500 GB
- Access time: 6 ms
- Data Center Security Index: 9
- Data Center Privacy Index: 10

Grid Resource Management

I need storage capacity in the EU!
- Free capacity: 100 GB
- Access time: < 15 ms
- Data Center Security Index: > 8
- Data Center Privacy Index: > 7
Privacy: Solutions (4)

- Privacy and the Grid:
 - No satisfactory solutions existing
 - Working solutions get more and more important with growing participation of industry in grid projects
 - Still much work to do

- In the contract between Grid service providers and resource providers it has to be made clear:
 - What kind of measures the parties are taking to ensure privacy
 - Who is to blame if personal data is getting stolen
Legal Topics: Much Work to do

- Legal topics of Grid-Computing
 - Currently not well-investigated
 - No court decisions exist
 - Many aspects of Grid-Computing are not new
 - Huge similarities with outsourcing of business processes and with web hosting offers of Internet service providers or Internet web hosting providers

- Problems arise in international projects
 - Who is to blame if a poor programmed grid-job causes a defect
 - Different legal systems have to be considered
What are the Costs for the Infrastructure?

- The biggest part of the total costs are personnel costs
 - Personnel is needed for running and improving infrastructure, user support and possibly software engineering
 - In Germany the employer of a scientist needs to budget € 80,000 through € 100,000 per employee per year
 - (Includes: salary, insurances, equipment, fees for training courses, …)

- Hardware for running an core-grid-installation for testing new software versions
 - The hardware needs to be **reinvested** every 3 years
What are the Costs for the Infrastructure?

- **Additional costs**
 - Costs for electrical power and cooling
 - With water cooling: approximately € 4 per watt per year
 - With air cooling: approximately € 5 per watt per year
 - Additional costs per server
 - Rack and storing position
 - Administration and batch licenses

- **Helpdesk-Tool (Trouble Ticket System)**
 - Open Source Tools: OneOrZero, XOOPS, Request Tracker, …
 - Proprietary Tools: Remedy, …
 - Purchase costs depend on product and number of users
 - Support contract: approximately 15% of purchase costs per year

- **Marketing**: flyer, poster, conference fees, hosting workshops, …
Software Licenses (1)

- Fear of complications because of incompatible software licenses in the beginning of D-Grid

- Questions asked:
 - Is it possible to mix software under different Open Source software licenses and proprietary software licenses?
 - Is it allowed to collect all needed Grid software und distribute it on one CD?
 - What software licenses give us the benefits of Open Source and leave the door open for industry?
 - What Open Source software license is suited best for developing Grid applications?

- The most popular Open Source software licenses were investigated for their appropriateness in Grid environments
 - GPL, LGPL, Apache License 2.0, Mozilla Public License, Q Public License, …
 - Result: Apache License 2.0 is best suited
Software Licenses (2)

- **Apache License 2.0:**
 - Related to the BSD license
 - Non-viral: derived software is not required to be redistributed as Open Source
 - Software linked to software under the terms of the BSD or Apache License 2.0 does not need to have the same software license
 - Securing the project sovereignty while protecting the project name
 - Short and easy to understand

- **Most common Grid software uses the Apache License 2.0 or another BSD style license:**
 - **Unicore**: BSD license
 - **Globus Toolkit ≥ 4.0.1**: Apache License 2.0
 - **gLite**: EGEE Software License. Switch to Apache License 2.0 is planned
 - **GridSphere**: Apache License 2.0
 - **Shibboleth**: Apache License 2.0
 - **VOMS**: EU DataGrid Software License (EDG). BSD style license
 - **iRODS**: BSD style license
Next Steps for D-Grid

- Actually D-Grid develops a business model
- A German Grid support facility will be installed. Its tasks are:
 - Running the core services (Monitoring, Security, Billing, …)
 - Support for users and resource providers (Helpdesk, Phone)
 - Consulting of developers and resource providers
 - Consulting of resource providers in legal topics
- Costs of German Grid support facility depend on the services and number of customers
 - Major part of costs are personnel costs
 - Also environmental costs and costs for running a core-grid-installation
- The customers (users and resource providers) have to pay for the services they consume and will finance the German Grid support facility
Thank you for your attention!