Written examination in Computer Networks

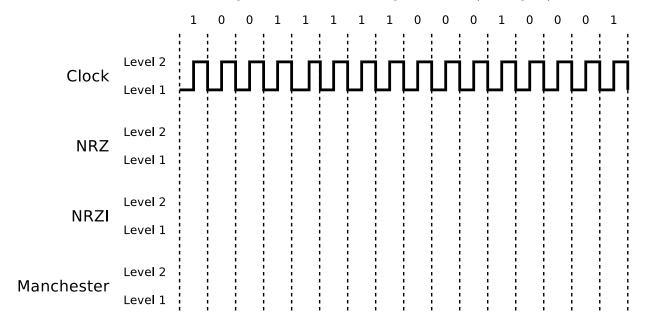
May 16th 2014

Last name:
First name:
Student number:
I confirm with my signature that I will process the written examination alone and that I feel healthy and capable to participate this examination. I am aware, that from the moment, when I receive the written examination, I am a participant of this examination and I will be graded.
Signature:

- Provide on all sheets (including the cover sheet) your *last name*, *first name* and *student number*.
- ullet Use the provided sheets. Own paper must not be used.
- Place your ID card and your student ID card on your table.
- You are allowed to use a *self prepared*, *single sided DIN-A4 sheet* in the exam. Only *handwritten originals* are allowed, but no copies.
- You are allowed to use a non-programmable calculator.
- Answers, written with pencil or red pen are *not* accepted.
- Time limit: 90 minutes
- Turn off your mobile phones!

Result:

Question:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Σ	Grade
Maximum points:	6	6	4	10	11	7	5	6	5	8	4	7	4	7	90	
Achieved points:																


Question 1)

Points:

Maximum points: 6

Give the encoding for the given bit pattern.

Please assume that the initial signal level of NRZI is signal level 1 (low signal).

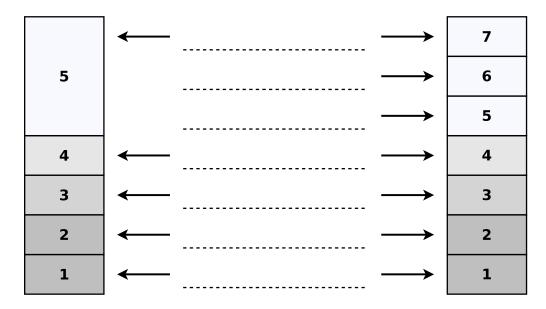
Question 2)

Points:

Maximum points: 0.5+0.5+1+1+1+1+1=6

- a) Explain the difference between serial data transmission and parallel data transmission.
- b) Computer networks usually implement...
 - \square serial data transmission \square parallel data transmission
- c) Name an advantage of serial data transmission.
- d) Name an advantage of parallel data transmission.
- e) Name 2 systems, that operate according to the simplex principle.
- f) Name 2 systems, that operate according to the full-duplex principle.
- g) Name 2 systems, that operate according to the half-duplex principle.

Question 3)


Points:

Maximum points: 3.5+0.5=4

a) Write on the dotted lines the names of the layers.

Hybrid Reference Model

OSI Reference Model

b) Why are the layers 5 and 6 of the OSI reference model not intensively used in practice?

Last name:	First name:	Student number:	
------------	-------------	-----------------	--

\bigcirc	•	
Quest	ion	4)
9 01 0 10 0		

Mark for each row of the table the corresponding layer of the **hybrid reference model**.

1 stands for the bottom layer and 5 for the top layer in the hybrid reference model. If more than just a single layer are a correct answer, it is sufficient to select at least a single correct layer.

	Hybrid reference model la						
	1	2	3	4	5		
4B5B							
Address Resolution Protocol (ARP)							
Alternate Mark Inversion (AMI)							
Autonomous Systems							
Border Gateway Protocol (BGP)							
Bridge							
Congestion control							
CSMA/CA							
CSMA/CD							
Cyclic Redundancy Check (CRC)							
Distance vector routing protocols							
Dynamic Host Configuration Protocol (DHCP)							
Ethernet							
File Transfer Protocol (FTP)							
Flow control							
Gateway							
Hub							
Hypertext Transfer Protocol (HTTP)							
ICMP							
Internet Protocol (IP)							

Last name:	First name:	Student number:

\bigcap	uestion	5)
V	destion	$\boldsymbol{\sigma}_{j}$

Points:											

Mark for each row of the table the corresponding layer of the **hybrid reference model**.

1 stands for the bottom layer and 5 for the top layer in the hybrid reference model. If more than just a single layer are a correct answer, it is sufficient to select at least a single correct layer.

	Hybr	id refe	rence	model	layer
	1	2	3	4	5
Logical addresses					
Link state routing protocols					
Manchester-Code					
Media access control					
Modem					
Multilevel Transmission Encoding - 3 Levels					
Multiport Bridge					
Non-Return to Zero					
Open Shortest Path First (OSPF)					
Physical addresses					
Port numbers					
Reliable end-to-end data connection					
Repeater					
Router					
Routing Information Protocol (RIP)					
Security					
Spanning Tree Protocol (STP)					
Switch					
Telnet					
Transmission Control Protocol (TCP)					
User Datagram Protocol (UDP)					
Wireless LAN					

Question 6)

Points:

Maximum points: 1+1+1+1+1+1=7

- a) What is the major difference between Bridges and Layer-2-Switches?
- b) Why do Bridges and Layer-2-Switches not require physical or logical addresses?
- c) What is the advantage of learning Bridges in contrast to "dumb" Bridges?
- d) What happens, if for a network device no entry exists in the forwarding table of a Bridge?
- e) What is a switched network?
- f) Name an advantage of a switched network.
- g) Why is it impossible to connect different buildings with shielded cables?

Question 7)

Points:

Maximum points: 1+1+1+1+1=5

a) What is the task of the Root Bridge?

b) What is the selection criteria for determining, whether a Bridge becomes the Root Bridge?

c) What is a Designated Bridge and what is its task?

d) How many Designated Bridges does a computer network contain?

e) What is the selection criteria for determining, whether a Bridge becomes a Designated Bridge?

Last name:	First name:	Student number:
Question	8)	Points:
Maximum points: 1+	-1+1+3=6	
,	ark the frames' borders is ial issue that can arise from	via character count in the frame header. m this method.
b) One way to ma method.	ark the frames' borders is v	via Byte Stuffing. Name a drawback of this
, -	to-date Data Link Layer protection to byte-oriented?	rotocols, such as Ethernet and WLAN, bit-
Sender IP ac Sender MAC Hostname of Information Preamble to Port number CRC checks Information VLAN tag Receiver MAC Receiver IP	C address f the receiver about the Transport Laye synchronize the receiver r of the receiver um about the Application Lay AC address	r protocol used ver protocol used

 \square Hostname of the sender

☐ Port number of the sender

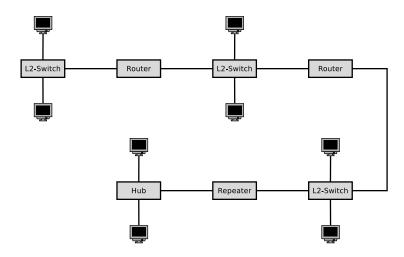
 \Box Signals, which are transmitted via the transmission medium

Last name:	First name:	Student number:

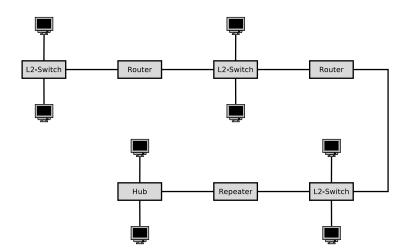
Question	9))
9 01 0 10 0 1 0 1 1		•

Encode the bit sequence with 5B6B and NRZ and draw the signal curve.

Bit sequence: 11010 11110 01001 00010 01110


5B	6B	6B	6B	ъв	68	6B	6B
	neutral	positive	negative		neutral	positive	negative
00000		001100	110011	10000		000101	111010
00001	101100			10001	100101		
00010		100010	101110	10010		001001	110110
00011	001101			10011	010110		
00100		001010	110101	10100	111000		
00101	010101			10101		011000	100111
00110	001110			10110	011001		
00111	001011			10111		100001	011110
01000	000111			11000	110001		
01001	100011			11001	101010		
01010	100110			11010		010100	101011
01011		000110	111001	11011	110100		
01100		101000	010111	11100	011100		
01101	011010			11101	010011		
01110		100100	011011	11110		010010	101101
01111	101001			11111	110010		

Question 10)


Points:

Maximum points: 5.5+1.5+1=8

a) Sketch in the diagram of the network topology all collision domains.

b) Sketch in the diagram of the network topology all broadcast domains.

c) How many logical subnets are required for this network topology?

Last name:	First name:	Student number:	
------------	-------------	-----------------	--

lack	111
Question	$\perp \perp \downarrow$

Points:																						
---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Error Detection via CRC: Check, if the received frame was transmitted correctly.

Received frame: 1101001111100 Generator polynomial: 100101

Question	12)
	,

Points:

Maximum points: 3+4=7

a) Error Correction via simplified Hamming Distance (Hamming ECC method). Calculate the message, that will be transmitted (payload inclusive parity bits).

Payload: 10011010

b) Error Correction via simplified Hamming Distance (Hamming ECC method). Verify, if the received message was transmitted correctly.

Received message: 0001101100101101

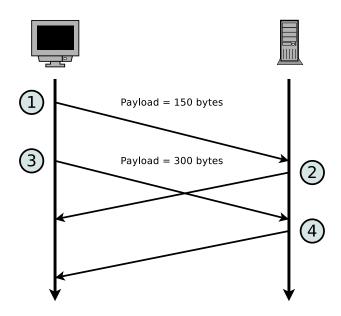
Last name:	First name:	Student number:
Last Hallo.	i iibt iidiiic.	Duddelle Hallibe.

Question	13)
•	

Points:											

Calculate the first and last host addresses, the network address and the broadcast address of the subnet.

IP Address:	151.175.31.100	10010111.10101111.	00011111.01100100
Subnet mask:	255.255.255.128	11111111.111111111.	11111111.10000000
Network address?		·	·
First host address?		··	·
Last host address?		··	·
Broadcast address?			


binary representation	decimal representation
10000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

Question 14)

Points:

Maximum points: 7

The diagram shows an excerpt of the transmission phase of a TCP connection. Complete the table.

Message	ACK	SYN	FIN	Payload length	Seq number	Ack number
1	0			150	831	1251
2	1			0		
3	0			300		
4	1			0		