Sample solution of the written examination in Computer Networks

February 14th 2014

Last name:	
First name:	
Student number:	

- Provide on all sheets (including the cover sheet) your *last name*, *first name* and *student number*.
- Use the provided sheets. Own paper must *not* be used.
- Place your *ID card* and your *student ID card* on your table.
- You are allowed to use a *self prepared*, *single sided DIN-A4 sheet* in the exam. Only *handwritten originals* are allowed, but no copies.
- You are allowed to use a non-programmable calculator.
- Answers, written with pencil or red pen are *not* accepted.
- Time limit: 90 minutes
- Turn off your mobile phones!

Result:

1	2	3	4	5	6	7	8	9	10	11	12	13	Σ	Grade

Question 1)

Points:

Maximum points: 7

An image has a size of 2000x1000 pixels. 2 Bytes per pixel are used for the color information. Assume the image is uncompressed. How long does it take to transmit the image via a...

2000 * 1000 pixels = 2,000,000 pixels 2,000,000 pixels * 2 Bytes/pixel = 4,000,000 Bytes 4,000,000 Bytes * 8 = 32,000,000 Bits

a) 64 kbps ISDN connection?

 $\frac{_{32,000,000\,\rm Bits}}{_{64,000\,\rm Bits/s}} = 500\,\rm s$

b) 16 Mbps DSL connection?

 $\frac{_{32,000,000}\,{\rm Bits}}{_{16,000,000}\,{\rm Bits/s}}=2\,{\rm s}$

c) 100 Mbps Ethernet connection?

 $\frac{32,000,000\,{\rm Bits}}{100,000,000\,{\rm Bits/s}}=0.32\,{\rm s}$

Last name:	First name:	ç	Student number:
Question	a 2)	=7	Points:
a) Computer net	works usually implem	nent	
\boxtimes serial	data transmission	\Box parallel d	lata transmission
b) Computer net	works with coaxial ca	ables operate in.	
\Box simple	ex mode \Box ful	l-duplex mode	\boxtimes half-duplex mode
c) The global pos	sitioning system (GP	S) operates in	
\boxtimes simple	\propto mode \Box full	l-duplex mode	\Box half-duplex mode
d) Computer net	works with twisted p	air cables operat	e in
\Box simple	ex mode ⊠ ful	l-duplex mode	\Box half-duplex mode
e) Wireless netwo	orks with just a singl	e channel operat	e in
\Box simple	ex mode \Box ful	l-duplex mode	\boxtimes half-duplex mode
f) What describes It describes th	es the physical topolo e wiring.	gy of a compute	r network?
g) What describes It describes th	s the logical topolog e flow of data.	y of a computer	network?

Question 3)

Points:																							
Points:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Maximum points: 3.5+0.5+0.5+0.5+0.5+0.5=6

a) Write on the dotted lines the names of the layers.

Hybrid Reference Model

OSI Reference Model

b) Ethernet frames are created in the Data Link layer.

- c) UDP segments are created in the *Transport* layer.
- d) IP packets are created in the *Network* layer.
- e) Signals are created in the *Physical* layer.
- f) TCP segments are created in the $\ Transport$ layer.

Question 4)

Points:

Maximum points: 4+2+1+1+1=9

a) Assign the devices in the table to the layers of the hybrid reference model.

Column 1 stands for the bottom layer and column 5 for the top layer of the hybrid reference model. If more than just a single layer is a correct answer, it is sufficient to select at least one correct layer.

	Hybrid reference model laye					
	1	2	3	4	5	
Bridge		Х				
Gateway	Х	Х	Х	Х	Х	
Hub	Х					
Modem	Х	Х				
Multiport Bridge		Х				
Repeater	Х					
Router			Х			
Switch		Х	Х			

b) Name two examples of Bridge implementations.

WLAN Bridges and Laser Bridges.

c) What information is stored in forwarding tables of Bridges?

Learning Bridges store this information, which network devices are accessible via which port in local forwarding tables.

d) Why do Bridges try to avoid loops?

Loops can cause malfunctions and reduce the performance of the network or even lead to a network failure.

e) Which device connects wireless network devices in infrastructure mode? Access Point

Question 5)

Points:

Maximum points: 2+2+1+1=6

- a) Which two problems can occur, when the line code NRZ is used to encode data? Baseline wander and clock recovery.
- b) How can the problems from subtask a) be avoided?

To prevent baseline wander, the usage of the signal levels must be equally distributed.

One way to ensure clock recovery is by using a separate line, which transmits just the clock. In computer networks, a separate signal line just for the clock is not practical because of the cabling effort. Instead, it is recommended to increase the number of guaranteed signal level changes to enable the clock recovery from the data stream.

- c) Why do not all line codes ensure a signal level change for each transmitted bit? Lack of efficiency.
- d) How is the efficiency of a line code calculated?

Efficiency = Ratio of bit rate (payload in bits per time) and baud rate (signal changes per second).

Question 6)

Points:

Maximum points: 5

Encode the bit sequence with 5B6B and NRZ and draw the signal curve.

Bit sequence: 10111 10010 01001 01011 00100 $\,$

5B	6B	6B	6B	5B	6B	6B	6B
	neutral	$\mathbf{positive}$	negative		neutral	$\mathbf{positive}$	negative
00000		001100	110011	10000		000101	111010
00001	101100			10001	100101		
00010		100010	101110	10010		001001	110110
00011	001101			10011	010110		
00100		001010	110101	10100	111000		
00101	010101			10101		011000	100111
00110	001110			10110	011001		
00111	001011			10111		100001	011110
01000	000111			11000	110001		
01001	100011			11001	101010		
01010	100110			11010		010100	101011
01011		000110	111001	11011	110100		
01100		101000	010111	11100	011100		
01101	011010			11101	010011		
01110		100100	011011	11110		010010	101101
01111	101001			11111	110010		

Question 7)

Points:

Maximum points: 7

Which protocol...

- a) provides congestion control and flow control? \$TCP\$
- b) resolves logical addresses into physical addresses? ARP
- c) <u>avoids</u> collisions inside physical networks? CSMA/CA
- d) provides routing within autonomous systems via the Bellman-Ford algorithm? RIP
- e) allows remote control of computers in an <u>encrypted</u> way? SSH
- f) provides routing within autonomous systems via the Dijkstra algorithm? OSPF
- g) assigns the network configuration to network devices? DHCP
- h) allows remote control of computers in a <u>unencrypted</u> way? Telnet
- i) realizes connectionless inter-process communication? UDP
- j) resolves domain names into logical addresses? DNS
- k) detects collisions inside physical networks? CSMA/CD
- l) allows downloading and uploading files in an unencrypted way? \$FTP\$
- m) exchanges diagnostic and control messages? \$ICMP\$
- n) reduces a computer network to a loop-free tree? STP

Last name:	First name:	Student number:

Question 8)

Points:

Maximum points: 4+2=6

a) Sketch in the diagram of the network topology all collision domains.

b) Sketch in the diagram of the network topology all broadcast domains.

Question 9)

Points:

Generator polynomial: 100101

Maximum points: 4+4=8

a) Error Detection via CRC: Check, if the received frame was transmitted correctly.

Received frame: 1011010110110 101101011010 100101|||||| -----vv||||| 100001|||| 100101|||| 100101|| 100101|| 100101|| -----vv 10 => Error

b) Error Correction via simplified Hamming Distance (Hamming ECC method). Verify, if the received message was transmitted correctly.

Question 10)

Points:

Maximum points: 5+5=10

Calculate for each subtask the subnet mask and answer the questions.

a) Split the class B network 175.8.0.0 for implementing 50 subnets.

Network ID: 10101111.00001000.00000000.00000000 175.8.0.0 Number of bits for subnet IDs? 6 Bits Subnet mask: 111111111111111111100.00000000 255.255.252.0 Number of bits for host IDs? 10 Number of host IDs per subnet? $2^{10} - 2 = 1022$

Number of possible subnets? 16

binary representation	decimal representation
1000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

Question 11)

Points:

Maximum points: 8

Calculate the first and last host addresses, the network address and the broadcast address of the subnet.

IP Address:	167.199.31.131	10100111.11000111.00011111.10000011
Subnet mask:	255.255.254.0	11111111.1111111.11111110.00000000
Hostpart:		x xxxxxxx
Network address?	167.199.30.0	10100111.11000111.00011110.00000000
First host address?	167.199.30.1	10100111.11000111.00011110.00000001
Last host address?	167.199.31.254	10100111.11000111.00011111.11111110
Broadcast address?	167.199.31.255	10100111.11000111.00011111.11111111

binary representation	decimal representation
1000000	128
11000000	192
11100000	224
11110000	240
11111000	248
11111100	252
11111110	254
11111111	255

Question 12)

Points:

Maximum points: 8

The diagram shows an excerpt of the transmission phase of a TCP connection. Complete the table.

Message	ACK	SYN	FIN	Payload length	Seq number	Ack number
1	0	0	0	50	220	931
2	1	0	0	0	931	270
3	0	0	0	300	270	931
4	1	0	0	0	931	570
5	0	0	0	150	931	570
6	1	0	0	0	570	1081

Question 13)

Points:

Maximum points: 1+1+1=3

a) Which two possible reasons for the occurrence of congestion exist?

Receiver capacity: The receiver can not process the received data fast enough and therefore its receive buffer becomes full.

Network capacity: Congestion of the network occurs.

- b) Mark in the figure the slow-start phase.
- c) Mark in the figure the congestion avoidance phase.

