
Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

9th Slide Set
Computer Networks

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences
(1971–2014: Fachhochschule Frankfurt am Main)

Faculty of Computer Science and Engineering
christianbaun@fb2.fra-uas.de

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 1/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Learning Objectives of this Slide Set

Transport Layer
Characteristics of Transport Layer protocols
Addressing in the Transport Layer
User Datagram Protocol (UDP)

Format of UDP segments
Functioning

Transmission Control Protocol (TCP)
Format of TCP segments
Functioning
Flow control
Congestion Control
Denial-of-service attacks via SYN flood

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 2/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Transport Layer

Functions of the Transport Layer
Contains end-to-end protocols for inter-process communication
In this layer, processes are addressed via port numbers
Application Layer data is split here into smaller segments

Exercise sheet 5
repeats the
contents of this
slide set which are
relevant for these
learning objectives

Devices: Gateway
Protocols: TCP, UDP

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 3/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Challenges for Transport Layer Protocols

The Network Layer protocol IP works connectionless
IP packets are routed independently of each other to the destination site
Advantage: Little overhead

Drawbacks from the Transport Layer perspective
IP packets can get lost or discarded because the TTL has expired
IP packets often arrive at the destination site in the wrong order
Multiple copies of IP packets arrive at the destination

Reasons:
Large networks are not static =⇒ their infrastructure constantly changes
Transmission media can fail
The workload varies and therefore the networks’ delay

These problems are common in computer networks
Depending on the application, transport protocols need to compensate
these drawbacks

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 4/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Characteristics of Transport Layer Protocols

Desired characteristics of Transport Layer protocols include. . .
guaranteed data transmission
ensuring the correct delivery order
support for data transmissions of any size
the sender must not overload the network

It must be able to adjust its own data flow (data rate) =⇒ flow control
the receiver should be able to control the transmission rate of the sender
=⇒ congestion control

Transport Layer protocols can convert the networks’ negative
characteristics into the (positive) characteristics that are required for
inter-process communication (end-to-end-communication)
The most common used Transport Layer protocols:

UDP
TCP

The addressing is realized via sockets
Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 5/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Addressing in the Transport Layer
Every application which uses TCP or UDP, has a port number
assigned

It specifies which service is accessed
For TCP and UDP, the size of port numbers is 16 bits

Thus, the range of possible port numbers is from 0 to 65,535
In principle, port numbers can be assigned as wished

Conventions exist, that specify which ports are used by common used
applications

Port number Service Description
21 FTP File transfer
22 SSH Encrypted terminal emulation (secure shell)
23 Telnet Terminal emulation for remote control of computers
25 SMTP E-mail transfer
53 DNS Resolution of domain names into IP addresses
67 DHCP Assignment of the network configuration to clients
80 HTTP Webserver
110 POP3 Client access to E-mail server
143 IMAP Client access to E-mail server
443 HTTPS Webserver (encrypted)
993 IMAPS Client access to E-mail server (encrypted)
995 POP3S Client access to E-mail server (encrypted)

The table only contains a small selection of well-known port numbers
Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 6/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Ports (2/2)
The port numbers are divided into 3 groups:

0 to 1023 (Well Known Ports)
These are permanently assigned to applications and commonly known

1024 to 49151 (Registered Ports)
Application developers can register port numbers in this range for own
applications

49152 to 65535 (Private Ports)
These port numbers are not registered and can be used freely

Different applications can use identical port numbers inside an operating system at the same time, if they communicate via
different transport protocols
In addition, some applications exist, which implement communication via TCP and UDP via a single port number
Example: Domain Name System – DNS (see slide set 10)

Well Known Ports and Registered Ports are assigned by the Internet
Assigned Numbers Authority (IANA)
In Linux/UNIX systems, the configuration file /etc/services exists

Here, the applications (services) are mapped to specific port numbers
In Windows systems: %WINDIR%\system32\drivers\etc\services

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 7/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Sockets

Sockets are the platform-independent, standardized interface between
the implementation of the network protocols in the operating system
and the applications
A socket consists of a port number and an IP address
Stream Sockets and datagram sockets exist

Stream sockets use the connection-oriented TCP
Datagram sockets use the connectionless UDP

Tool(s) to monitor the open ports and sockets with. . .
Linux/UNIX: netstat, lsof, ss (part of the iproute2 package), nmap

Windows: netstat, tcpvcon, TCPView, PowerShell (Get-NetTCPConnection,
Get-NetUDPEndpoint)

Alternatives for sockets to implement inter-process communication (IPC)
Pipes, message queues and shared memory =⇒ see Operating Systems course

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 8/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

User Datagram Protocol (UDP)

Connectionless Transport Layer protocol
Transmissions take place without previous connection establishment

More simple protocol in contrast to the connection-oriented TCP
Only responsible for addressing of the segments
Does not secure the data transmission

The receiver does not acknowledge transmissions at the sender
Segments can get lost during transmission

Depending on the application (e.g. video streaming) this is accepted
If a TCP segment (and therefore some image information) gets lost
during the transmission of a video, it is requested again

A drawback would be dropouts
To compensate for this, a buffer at the receiver site is required

Especially video telephony software tries to keep the buffer as small as
possible because they cause delays

If UDP is used for video transmission or video telephony, the only
consequence of losing a segment is losing an image

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 9/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

User Datagram Protocol (UDP)

Maximum size of an UDP segment: 65,535 Bytes
Reason: The size of the length field inside the UDP header, which
contains the segment length, is 16 bits

The maximum representable number with 16 bits is 65,535
UDP segments of this size are transmitted in fragments by IP

UDP standard: RFC 768 from 1980
http://tools.ietf.org/rfc/rfc768.txt

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 10/50

http://tools.ietf.org/rfc/rfc768.txt

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Structure of UDP Segments
The UDP header consists of 4 fields, each 16 bits in size

Port number (sender)
The field can stay empty (value 0), if no response is required

Port number (destination)
Length of the complete segment (without pseudo-header)
Checksum of the complete segment (including pseudo-header)

A pseudo-header is created, which
includes the IP addresses of sender and
destination, as well as some Network
Layer information

Protocol ID of UDP = 17
The pseudo-header is not transmitted

But it is used for the checksum
calculation

Remember NAT from slide set 8. . .

If a NAT device (Router) is used, this routing device also needs to recalculate the checksums in UDP segments when doing IP
address translations

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 11/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Lost Segments, Duplicates, Order of Segments
UDP segments can. . .

get lost
arrive multiple times at the recipient (=⇒ duplicates)
arrive out of sequence

If UDP is used, the receiver cannot detect and resolve such events on
transport layer because UDP does not number the segments (in
contrast to TCP =⇒ slide 17)
UDP has no mechanism to re-request lost messages, identify
duplicates or identify and correct the correct sequence of
segments

The application protocol must handle these issues
Possible techniques: Sequence numbers, acknowledgements, timestamps,
timeouts, re-requests
One example of an application protocol that implements these techniques
is the Trivial File Transfer Protocol (TFTP)

UDP Usage Guidelines for Application Designers:
https://www.ietf.org/archive/id/draft-ietf-tsvwg-udp-guidelines-04.html
Trivial File Transfer Protocol (TFTP): RFC 1350

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 12/50

https://www.ietf.org/archive/id/draft-ietf-tsvwg-udp-guidelines-04.html
https://datatracker.ietf.org/doc/html/rfc1350

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Connectionless Communication via Sockets – UDP

Client
Create socket (socket)
Send (sendto) and receive data (recvfrom)
Close socket (close)

Server
Create socket (socket)
Bind socket to a port (bind)
Send (sendto) and receive data (recvfrom)
Close socket (close)

UDP sockets can be implemented as blocking (standard) and non-blocking

sendto applied to a non-blocking socket causes an error message EAGAIN or EWOULDBLOCK if the send buffer has no
sufficient free capacity but the process is not blocked. The process can later try to write data into the send buffer
recvfrom applied to a non-blocking socket causes an error message EAGAIN or EWOULDBLOCK if the receive buffer has no
data to be fetched but the process is not blocked. The process can later try to fetch data from the receive buffer

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 13/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Sockets via UDP – Example (Server)

1 #!/ usr/bin/env python
2 # Server : Receives a message via UDP
3
4 import socket # Import module socket
5
6 # For all interfaces of the host
7 HOST = '' # '' = all interfaces
8 PORT = 50000 # Port number of server
9

10 # Create socket and return socket deskriptor
11 sd = socket . socket (socket .AF_INET , socket . SOCK_DGRAM)
12
13 try:
14 sd.bind ((HOST , PORT)) # Bind socket to port
15 while True:
16 # Receive data
17 data = sd. recvfrom (1024)
18 # Print out received data
19 print 'Received :', repr(data)
20 finally :
21 sd. close () # Close socket

$ python udp_server .py

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 14/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Sockets via UDP – Example (Client)

1 #!/ usr/bin/env python
2 # Client : Sends a message via UDP
3
4 import socket # Import module socket
5
6 HOST = 'localhost ' # Hostname of Server
7 PORT = 50000 # Port number of Server
8 MESSAGE = 'Hello World ' # Message
9

10 # Create socket and return socket deskriptor
11 sd = socket . socket (socket .AF_INET , socket . SOCK_DGRAM)
12
13 # Send message to socket
14 sd. sendto (MESSAGE , (HOST , PORT))
15
16 sd. close () # Close socket

$ python udp_client .py

$ python udp_server .py
Received : ('Hello World ', ('127.0.0.1 ', 39834))

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 15/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Transmission Control Protocol (TCP)

Connection-oriented Transport Layer protocol
Makes connections via IP reliable in a way, which is desired or required
for many applications
Ensures that segments reach their destination completely and in the
correct order

Lost or unacknowledged TCP segments are requested by the receiver at
the sender and sent again

TCP connections are opened and closed like files
Equal to files, the position in the data stream is precisely specified

TCP standard: RFC 793 from 1981
http://tools.ietf.org/rfc/rfc793.txt

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 16/50

http://tools.ietf.org/rfc/rfc793.txt

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Sequence Numbers in TCP

TCP treats payload as an unstructured, but ordered data stream
Sequence numbers are used for numbering the bytes in the data
stream

The sequence number of a segment is the position of the segment’s first
byte in the data stream

Example
The sender splits the Application Layer data stream into segments

Length of data stream: 5,000 bytes
MSS: 1,460 bytes

Some key figures. . .

Maximum Transfer Unit (MTU): Maximum size of the IP packets
MTU of Ethernet = 1,500 bytes, MTU of PPPoE (e.g. DSL) = 1,492 bytes
Maximum Segement Size (MSS): Maximum segment size
MSS = MTU - 40 bytes for IPv4 header and TCP header

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 17/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Structure of TCP Segments (1/5)
A TCP segment can contain a
maximum of 64 kB payload (data of the
Application Layer)

Usually, segments are smaller
(≤ 1500 bytes for Ethernet)

The header of TCP segments is more
complex compared with UDP segments

Overhead

Size of the TCP header (without the options field): just 20 bytes
Size of the IP header (without the options field): also just 20 bytes

=⇒ The overhead caused by the TCP and IP headers is small for an IP packet with a size of
several kB
Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 18/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Structure of TCP Segments (2/5)
One field contains the port number of
the sender process
Another field contains the port number
of the process which is expected to
receive the segment
Seq number contains the sequence
number of the current segment
Ack number contains the sequence
number of the next expected segment

The length field specifies the size of the TCP header in 32-bit words to
tell the receiver where the payload starts in the segment

The field is required, because the field options and padding can have a
variable length (a multiple of 32 bits)

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 19/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Structure of TCP Segments (3/5)
The field 000000 is 6 bits long and not
used

It contains per default value zero
The 6 fields with a size of 1 bit each, are
required for connection establishment,
data exchange and connection
termination

The functionality of these fields is
described with the assumption that the
fiels contain the value 1 =⇒ it is set

URG (Urgent) is not discussed in this course

ACK (Acknowledge)
Specifies that the acknowledgement number in Ack number is valid
It is also used to acknowledge the receive of segments

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 20/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Structure of TCP Segments (4/5)

PSH (Push) is not discussed in this course

RST (Reset) is not discussed in this course

SYN (Synchronize)
Requests the synchronization of the
sequence numbers
That initiates the connection
establishment

FIN (Finish)
Requests the connection termination
and indicates that the sender will not
send any more payload

The field receive window contains the number of free bytes in the
sender’s receive window, which is necessary for flow control

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 21/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Structure of TCP Segments (5/5)
Just as with UDP, for each TCP
segment, a pseudo header exists, which
is not transmitted

But the pseudo header fields are used
together with the regular TCP header
fields and the payload to calculate the
checksum
Protocol ID of TCP = 6

The urgent pointer is not discussed in this course

The field options and padding must be a multiple of 32 bits and is
not discussed in this course

Remember NAT from slide set 8. . .

If a NAT device (Router) is used, this routing device also needs to recalculate the checksums in TCP segments when doing IP
address translations

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 22/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Functioning of TCP

You already know. . .
Each segment has a unique sequence number
The sequence number of a segment is the position of the segment’s first byte in the data
stream

The sequence number enables the receiver to. . .
correct the order of the segments
sort out segments, which arrived twice

The length of a segment is known from the IP header
This way, missing bytes in the data stream are discovered and the
receiver can request lost segments

To establish a connection, TCP uses a three-way handshake, where
both communication partners exchange control information in three
steps

This ensures that the communication partner exists and can accept data
transmissions

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 23/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

TCP Connection Establishment (three-way Handshake)

The server waits passively for an incoming connection

1 Client sends a segment with SYN=1 as a request
to synchronize the sequence numbers
=⇒ Synchronize

2 Server sends as confirmation a segment with
ACK=1 and requests with SYN=1 to synchronize
the sequence numbers too
=⇒ Synchronize Acknowledge

3 Client confirms with a segment with ACK=1 that
the connection is established
=⇒ Acknowledge
The initial sequence numbers (x and y) are determined randomly
No payload is exchanged during connection establishment!

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 24/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

TCP Data Transmission
To demonstrate a data transmission, Seq number (sequence number of the current segment) and
Ack number (sequence number of the next expected segment) need particular values

In our example at the beginning of the three-way handshake, the client’s sequence number is
x=100 and the server’s sequence number is y=500
After completion of the three-way handshake: x=101 and y=501

1 The client transmits 1000 bytes payload
2 Server acknowledges with ACK=1 the received

payload and requests with the Ack number 1101
the next segment. In the same segment, the server
transfers 400 bytes of payload

3 The client transmits another 1000 bytes payload.
And it acknowledges the received payload with the
ACK bit set and requests with the Ack number
901 the next segment

4 Server acknowledges with ACK=1 the received
payload and requests with the Ack number 2101
the next segment

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 25/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

TCP Connection Termination

Connection termination is similar to the connection establishment
Instead of the SYN bit set, the FIN bit is used to indicate that the
sender will not transmit any more payload

1 The client sends the request for connection
termination with FIN=1

2 The server sends an acknowledgment with ACK=1
3 The server sends the request for connection

termination with FIN=1
4 The client sends an acknowledgment with ACK=1

No payload is exchanged during connection termination!

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 26/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Reliable Transmission through Flow Control

Via Flow control, the receiver controls the transmission speed of the
sender dynamically, and this way ensures the completeness of the
data transmission

Receivers with a low performance should not be flooded with data they
can not process fast enough

As result, data would be lost
During transmission, lost data is transmitted again

Procedure: Transmission retries, when they are required
Basic mechanisms:

Acknowledgements (ACK) as feedback (receipt)
Timeouts

Concepts for flow control:
Stop-and-Wait
Sliding Window

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 27/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Stop-and-Wait
After transmitting a segment, the sender waits for an ACK

If no ACK arrives in a certain time =⇒ timeout
Timeout =⇒ segment is sent again

Drawback: Lesser throughput compared to the transmission-line capacitance
The Trivial File Transfer Protocol (RFC 783) operates according to the Stop-and-Wait principle

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 28/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Sliding Window

A window allows the sender to transmit a certain number of segments
before an acknowledgment is expected

Upon arrival of an acknowledgment, the transmit window is moved, and
the sender can send further segments

The receiver can acknowledge several segments at once
=⇒ cumulative acknowledgments

If a timeout occurs, the sender transmits all segments in the window
again

The sender sends everything again beginning from the last not
acknowledged sequence number

Objective: Better utilization of the line capacity and receiver capacity

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 29/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Sliding Window – Method: Sender

The transmit buffer contains data of the Application Layer, which. . .
has already been sent but not yet confirmed
is ready to be sent, but has not been sent up to now

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 30/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Sliding Window – Method: Receiver
The receive buffer contains data for the Application Layer, which. . .

is in the correct order, but has not been read
has been received out of sequence

The receiver informs the sender about the size of its receive window
This is important to avoid a buffer overflow!

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 31/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

TCP Flow Control

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 32/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Example of Flow Control in TCP

The receiver informs the sender in every segment, how much free
storage capacity its receive window has
If the receive window has no free capacity, the sender is blocked until it
gets informed by the receiver that free storage capacity exists
If storage capacity in the receive window becomes free =⇒ A segment
with the current free storage capacity is sent

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 33/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Silly Window Syndrome

The Silly window syndrome is a problem where a large number of
segments is send, which increases the protocol overhead

Scenario
A receiver is overloaded and its receive buffer is completely filled
Once the application has read a few bytes (e.g. 1 byte) from the receive
buffer, the receiver sends a segment with the free storage capacity of the
receive buffer
For this reason, the sender transmits a segment, which contains just
1 byte payload
Overhead: At least 40 bytes for the TCP/IP headers of each IP packet
(Required are: 1 segment with the payload, 1 segment for the
acknowledgement and eventually another segment which notifies about
the current free storage capacity in the receive window)

Solution: Silly window syndrome avoidance
The receiver does not notify the sender about free storage capacity in the
receive window before 25% of the receive buffer is free or a segment of
size MSS can be received

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 34/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Reasons why Congestion occurs
Possible reasons for the occurrence of congestion:

1 Receiver capacity
The receiver can not process the received data fast enough and therefore
its receive buffer becomes full
Already solved by flow control

2 Network capacity
Congestion (overload) occurs when the utilization of a computer network
exceeds its capacity =⇒ congestion control
Only useful reaction to congestion: Reduce the data rate
TCP tries to avoid congestion by changing the window size dynamically
=⇒ dynamic sliding window

The one solution, which solves both causes does not exist
Both causes are addressed separately

Signs of congestion of the network
Packet losses due to buffer overflows in Routers
Long waiting times due to full queues in Routers
Frequent retransmissions due to timeout or packet-/segment loss

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 35/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Approach to avoid Congestion

The sender maintains 2 windows
1 Advertised Receive Window

Avoids congestion of the receiver
Offered (advertised) by the receiver

2 Congestion Window
Avoids congestion of the network
Determined by the sender

The minimum of both windows is the maximum number of bytes, the
sender can transmit

Example:
If the receive window of the receiver has a free storage capacity of 20 kB,
but the sender recognizes that a network congestion occurs when more
than 12 kB are sent, it transmits only 12 kB

How does the sender know the capacitance of the network?
=⇒ how does the sender determine the size of the congestion window?

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 36/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Determine the Size of the Congestion Window

You already know. . .
The sender can precisely specify the size of the receive window
Reason: The receiver informs the sender with every segment, about the free storage capacity
of its receive window

Challenge for the sender: What is the size of the congestion
window?

The sender never knows the capacity of the network for sure
The capacity of computers networks is not static

It depends, among others, on the network utilization and the occurrence
of network faults

Solution: The sender must incrementally try to identify the network
capacity

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 37/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Determine the Congestion Window Size – Connection Establishment

During connection establishment, the sender
initializes the congestion window to maximum
segment size (MSS)
Method:

1 segment of size MSS is sent
If the segment is acknowledged before the
timeout expires, the congestion window is
doubled

2 segments of size MSS are sent
If both segments are acknowledged before the
timeout expires, the congestion window is
doubled again

. . .

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 38/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Determine the Congestion Window Size – Slow Start

The congestion window grows exponentially until. . .
the size of the receive window is reached, which has
been determined by the sender
or the threshold is reached
or a timeout expires

The exponential growth phase is called slow start
Reason: The low transmission rate of the sender at the
beginning

If the congestion window reaches the size of the receive
window, it stops growing
At the beginning of the transmission, the threshold
value is 216 bytes = 64 kB, so that it plays no role at
the beginning

Maximum size of the receive window: 216 − 1 bytes
This is determined by the size of the field window size
in the TCP header

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 39/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Determine the Congestion Window Size – Congestion Avoidance

If a timeout expires,. . .
the threshold value is set to half the
congestion window
and the size of the congestion window
is reduced to the size 1 MSS

Then, once again the slow start phase
follows

If the threshold value is reached, the
congestion window grows linear,. . .

until the size of the receive window is
reached, which is determined by the
receiver
or until a timeout expires

The linear growth phase is called
congestion avoidance

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 40/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Possible Continuation of the Example

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 41/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Reasons why a Timeout expires and reasonable Proceeding

An expired timeout can have different reasons
Congestion (=⇒ delay)
Loss of a transmission
Loss of an acknowledgment (ACK)

Not only delays due to congestion, but also each loss event reduces the
congestion window to size 1 MSS

The obsolete TCP version Tahoe (1988) works this way
Modern TCP versions differ between. . .

expired timeout caused by congestion of the network
and multiple arrival of acknowledgments (ACKs) caused by loss event

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 42/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Fast Retransmit

A lost segment causes a gap in the data
stream at receiver site

The receiver sends for every additional
received segment an ACK for the
segment before (the lost segment!)

If a segment gets lost, a reduction of the
congestion window to value 1 MSS is not
necessary

Reason: A segment loss is not caused by
congestion in any case

If 3 duplicate ACKs arrive, TCP Reno
(1990) sends the lost segment again
=⇒ fast retransmit

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 43/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Fast Recovery

TCP Reno also avoids the slow start
phase if 3 duplicate ACKs arrive
=⇒ fast recovery
If 3 duplicate ACKs arrive, the congestion
window is set directly to the threshold
value

The congestion window grows linear with
every acknowledged transmission,. . .

until the size of the receive window is
reached, which is specified by the
receiver
or until a timeout expires

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 44/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Additive Increase / Multiplicative Decrease (AIMD)

The concept of TCP congestion control is called AIMD
It stands for rapid reduction of the congestion window after a timeout
expired or a loss event occurred and slow (linear) increase of the
congestion window

Reason for aggressive reduction and conservative increase of the
congestion window:

The consequences of a congestion window which is too large in size are
worse than for a window which is too small
If the window is too small in size, available bandwidth remains unused
If the window is too large in size, segments will get lost and must be
transmitted again

This increases the congestion of the network even more!
The state of congestion must be left as quick as possible

Therefore, the size of the congestion window is reduced significantly

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 45/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Summary of Flow Control and Congestion Control

By using flow control, TCP tries to use the available bandwidth of a
connectionless network (=⇒ IP) efficiently

Sliding windows at sender site (transmit window) and receiver site
(receive window) are used as buffers for sending and receiving
The receiver controls the transmission behavior of the sender

Reasons why congestion happens: receiver capacity and network
capacity

The receive window avoids congestion of the receiver
The congestion window avoids congestion of the network
Actual available (used) window = minimum of both windows

Attempt to maximize the network utilization and react rapidly to
indications for congestion

Principle of Additive Increase / Multiplicative Decrease (AIMD)

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 46/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Connection-oriented Communication via Sockets – TCP

TCP sockets can also be
implemented in a blocking (default)
or non-blocking manner. This
affects the behavior of the functions
connect, accept, send and recv

Client
Create socket (socket)
Connect client with server socket (connect)
Send (send) and receive data (recv)
Close socket (close)

Server
Create socket (socket)
Bind socket to a port (bind)
Make socket ready to receive (listen)

Set up a queue for connection requests.
Specifies the number of connection requests,
which can be stored in the queue

Server accepts connections (accept)
Fetch the first connection request from the
queue

Send (send) and receive data (recv)
Close socket (close)

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 47/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Sockets via TCP – Example (Server)
1 #!/ usr/bin/env python
2 # Echo Server via TCP
3 import socket # Import module socket
4
5 HOST = '' # '' = all interfaces
6 PORT = 50007 # Port number of server
7
8 # Create socket and return socket deskriptor
9 sd = socket . socket (socket .AF_INET , socket . SOCK_STREAM)

10 # Bind socket to port
11 sd.bind ((HOST , PORT))
12 # Make socket ready to receive
13 # Buffer a single unaccepted connection maximum
14 sd. listen (1)
15 # Socket accepts connections
16 conn , addr = sd. accept ()
17
18 print 'Connected by ', addr
19
20 while 1: # Infinite loop
21 data = conn.recv (1024) # Receive data
22 if not data: break # Break infinite loop
23 conn.send(data) # Send back received data
24
25 sd. close () # Close socket

$ python tcp_server .py

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 48/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Sockets via TCP – Example (Client)
1 #!/ usr/bin/env python
2 # Echo Client via TCP
3
4 import socket # Import module socket
5
6 HOST = 'localhost ' # Hostname of Server
7 PORT = 50007 # Port number of server
8
9 # Create socket and return socket deskriptor

10 sd = socket . socket (socket .AF_INET , socket . SOCK_STREAM)
11 # Connect with server socket
12 sd. connect ((HOST , PORT))
13
14 sd.send('Hello , world ') # Send data
15 data = sd.recv (1024) # Receive data
16 sd. close () # Close socket
17
18 # Print out received data
19 print 'Empfangen :', repr(data)

$ python tcp_client .py
Empfangen : 'Hello , world '

$ python tcp_server .py
Connected by ('127.0.0.1 ', 49898)

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 49/50

Transport Layer User Datagram Protocol Transmission Control Protocol with Flow Control and Congestion Control

Denial-of-Service Attacks via SYN Flood

Target: Making services or servers inaccessible
A client sends multiple connection requests (SYN), but does not
respond to the acknowledgments (SYN ACK) of the server via ACK
The server waits some time for the acknowledgment of the client

The confirmation delay could be caused by a network issue
During this period, the address of the client and the status of incomplete
connection are stored in the memory of the network stack

By flooding the server with connection requests, the table, which stores
the TCP connections in the network stack is completely filled
=⇒ the server can no longer establish new connections
The memory consumption at the server may become so large that the
main memory gets completely filled and the server crashes
Countermeasure: Real-time analysis of the network by intelligent
firewalls

Prof. Dr. Christian Baun – 9th Slide Set Computer Networks – Frankfurt University of Applied Sciences – WS2425 50/50

	Transport Layer
	Challenges for Transport Layer Protocols
	Characteristics of Transport Layer Protocols
	Addressing in the Transport Layer
	Sockets

	User Datagram Protocol
	User Datagram Protocol (UDP)
	Connectionless Communication via Sockets

	Transmission Control Protocol with Flow Control and Congestion Control
	Sequence Numbers in TCP
	Structure of TCP Segments
	Functioning of TCP
	Reliable Transmission through Flow Control
	Stop-and-Wait
	Sliding Window
	Example of Flow Control in TCP
	Silly Window Syndrome
	Reasons why Congestion occurs
	Approach to avoid Congestion
	Determine the Size of the Congestion Window
	Reasons why a Timeout expires and reasonable Proceeding
	Fast Retransmit
	Fast Recovery
	Additive Increase / Multiplicative Decrease (AIMD)
	Summary of Flow Control and Congestion Control
	Connection-oriented Communication via Sockets
	Denial-of-Service Attacks via SYN Flood

